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INTRODUCTION 

Recent research activity in the field of metal-metal 

bonded compounds has led to the realization that this is an 

area ripening toward the fruition of systematic approaches to 

the preparation and understanding of such systems. Several 

excellent reviews have been published dealing with the phenom­

enon of metal-metal bonding (1,2,3). The term metal as used 

here is intended to refer only to the transition metal portion 

of the periodic table. The relatively recent increase in the 

number of discrete metal clusters isolated, where cluster con­

notes a molecular species containing two or more metal atoms, 

has transformed an inorganic curiosity into a viable chemical 

concept. The preparation and characterization of metal clus­

ters, while historically limited in scope, has become extensive 

enough during the past two decades to warrant considerable con­

fidence in further expansion of the area with regard to the 

discovery of new metal cluster species and improved synthetic 

routes to currently existing metal-metal bonded compounds. 

Interest in the research project chosen for investigation 

focused on metal halide clusters, while systems involving metal-

metal bonding in oxides, carboxylates, carbonyls and organo-

metallics were not incorporated into the plans and goals. The 

research reported here was designed to add further information 

to the extant data regarding metal clusters; more specifically 

emphasizing dimeric units which serve as the simplest case for 
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study and understanding of the attractive interaction between 

two metal atoms. 

Since the research performed relates exclusively to metal-

metal bonds it would be appropriate to define a bonding cri­

terion for such interactions. A rigorous definition is elusive, 

but there are several factors which are considered to be ger­

mane and these are discussed below. 

The advent of widespread computer accessibility has en­

abled many researchers to utilize x-ray diffraction techniques 

to unravel the exact structural details of various metal 

cluster compounds. This is doubtless the most powerful yet 

also the most demanding tool available for amassing accurate 

data pertaining to the compounds of interest. Not only is the 

distance between metal atoms a guide to the extent and type of 

interaction present, but also considerable insight can be 

gained by examining the structural distortions resulting from 

either attraction or repulsion of the metal atoms for one 

another. Generally the distance of closest approach in the 

metal itself serves as an estimate of the maximum separation 

consistent with a metal-metal attraction. The correlation 

between bond length and bond order is not always unequivocal, 

but typically the metal-metal distance is more responsive to 

environmental changes when the bond order is low and varies 

less with chemical changes as the bond order increases. It is 

clear that x-ray structural determinations will play an inte­

gral part in the characterization of species purported to 



www.manaraa.com

3 

contain metal-metal bonds. 

Magnetic properties can furnish significant information 

related to the presence or absence of metal-metal interactions. 

As an example one could consider the case of an even electron 

metal cluster species which exhibits diamagnetic behavior or 

temperature independent paramagnetism as a result of strong 

metal-metal bonding. Paramagnetism in the same material, on 

the other hand, could be interpreted as indicative of no con­

structive d orbital overlap between metal atoms and hence no 

net attraction. Exchange interactions through bridging ligands 

can cause antiferromagnetic behavior and low magnetic moments 

are difficult to interpret since large spin-orbit coupling 

constants may lead to such results for monomers. Disregarding 

the difficulties of generalizing the interpretation of magnet­

ic data, it remains true that magnetic studies can be very 

effectively applied to discerning the electronic status of 

particular individual cases. 

Analytical data can sometimes lead to a nonstoichiometric 

composition and the dilemma of nonintegral units within the 

simple formula is most easily resolved by considering multi­

ples of the basic unit. Such a result suggests that more than 

one metal atom is present in the molecular unit although no 

evidence is obtained relating to the forces holding the metal 

atoms together. In other words, bridging ligands may cause 

several metal atoms to reside in the same unit even though no 
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metal-metal attraction exists. Alternatively one could envi­

sion a cation-anion pair in which both ions contain a metal 

atom or atoms yet the only attractive force between them is 

the ionic force as a result of the overall charge. Such 

stoichiometric data is helpful in guiding one to an early 

decision as to whether a specific product should be abandoned 

or investigated further in hopes of isolating a species con­

taining multiple metal atoms. 

One can also list the existence and persistence of a 

multiple metal segment throughout substitution and oxidation-

reduction reactions as another metal-metal bond criterion. 

All of the above criteria have been applied to clusters at 

one time or another by various investigators and the concepts 

represented in the above discussions will serve as a basis 

for considering the metal-metal interactions in the two new 

dimeric compounds isolated and described during the course 

of this work. 

The physical description of a new compound must by neces­

sity be preceded by the successful synthetic route chosen to 

prepare the desired product. The common characteristics of 

related systems which have been studied previously must be 

pondered and conditions optimizing the production of such prop­

erties should be employed in the synthetic approach selected. 

A brief review of traits shared by the majority of metal clus­

ters is therefore appropriate background material. 
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The transition metals most prone to form metal-metal 

bonds are located in the lower left portion of the transition 

metal series; particularly noteworthy are the following ele­

ments : 

Nb Mo 

Ta W Re 

The propensity for forming metal clusters displayed by these 

elements may be attributed to two basic trends leading to this 

corner of the periodic chart. 

Sheldon (4) has noted the orbital size factor as an impor­

tant component of metal-metal bonding. It is credible to cite 

the lack of metal-metal bonding among the elements of the first 

transition series as due to the small size of the 3d orbitals 

available for overlap. The larger atoms of the second and 

third series are capable of greater orbital overlap and this 

results in greater stability for homonuclear bonded compounds 

of these elements. Another factor influencing orbital size is 

the effective charge located on the metal nucleus and inner 

electron shells. As one proceeds across the periodic chart 

from left to right the orbitals contract slightly due to the 

increased charge associated with the addition of more protons 

at the nucleus while the added charge is not completely 

screened by the accompanying outer shell electrons. 

Low oxidation states are prevalent among metal clusters 

and this provides for greater orbital expansion than high 

oxidation states common to many heavy metals where more polar 
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metal-halogen bonds contract the orbitals inward. Oxidation 

states of 2+ and 3+ are typical of many heavy metal clusters, 

but even such low formal valencies fail to form metal clusters 

within the 3d series with any facility. One discussion of the 

thermodynamics of low oxidation state metal-halides has led to 

the conclusion that the highly unfavorable energy of sublima­

tion required for the metals of interest dictates that some 

attractive metal-metal force be retained in order that the 

overall reaction is thermodynamically favorable (5). A further 

condition favoring the left section of the series is that the 

metal atom involved must be electron deficient. If metal 

orbitals are to interact and lower the energy of the system the 

number of electrons available for filling the resulting bonding 

orbitals must be greater than the number of electrons which 

will be placed in antibonding orbitals. Thus the total number 

of electrons involved in metal-metal molecular orbitals would 

optimally equal the number of atomic orbitals contributing to 

effective overlap, as then two electrons per orbital would 

occupy only the bonding molecular orbitals. If both metal 

atoms are electron-rich the resulting molecular configuration 

will have filled antibonding orbitals and destabilize the 

metal-metal interaction. Thus it is reasonable that metal 

configurations of five d-electrons or less are found in metal 

clusters to the exclusion of higher electron configurations. 

Steric requirements are also eased for low oxidation state 
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metals of the second and third series. The larger metals to 

the left of the chart can support more ligands and metal-metal 

bonds can be more easily accommodated due to the space avail­

able. The properties and restrictions listed above do indeed 

guide one to that section of the periodic table which is most 

noted for the formation of metal clusters. It should be men­

tioned that many of the points essential for metal-metal bond­

ing in halide complexes are not applicable to carbonyl clus­

ters due to the exceptional electron accepting ability of the 

carbon monoxide ligand and the extremely low oxidation states 

accessible to such systems. In summary, one can conclude that 

any successful synthetic route which condenses monomeric metal 

moieties into clusters containing one or more metal-metal 

bonds will have to bring to bear conditions promoting the 

principles which have been reviewed. 

Preparative routes to metal clusters have historically 

involved high temperature, sealed tube reactions. Perhaps the 

most common synthetic approach is to reduce a high oxidation 

state halide with a reducing agent such as hydrogen gas, 

aluminum or the metal itself. Formation of metal clusters via 

halogen oxidation of the metal is of limited utility due to 

the difficulties encountered in controlling the products under 

the oxidizing conditions required. Another tack which has pro­

duced metal-metal bonds has been disproportionation of inter­

mediate oxidation state halide species. The synthetic aspect 

stressed in the orientation of this research centers on reac-
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tiens which actually convert monomeric metal species into clus­

ters, so substitution of ligands or oxidation-reduction of 

existing metal-metal bonded species are not considered in 

depth, but these reactions are in fact responsible for the 

wide variety of metal clusters now known. 

The purpose of the work performed was to add to the exist­

ing pool of information relating to metal clusters, hopefully 

utilizing relatively mild conditions to prepare interesting 

products. The proposed goals were achieved via the isolation 

of two new metal-metal bonded dimers, one containing tantalum 

in the novel 3+ oxidation state and the other an unusual para­

magnetic tungsten dimer. The synthetic techniques employed in 

isolating these two compounds are quite dissimilar and the 

organization of this thesis has therefore dictated a two part 

division. The tantalum system will be treated first in its 

entirety followed by details of the research pertaining to the 

tungsten dimer. The original synthetic route and complete 

physical characterization, including an x-ray structural deter­

mination, will be presented in each case. 



www.manaraa.com

9 

PART I. SYNTHESIS AND CHARACTERIZATION OF TagX^CSC^Hgjg, 

(X = CI, Br) 
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REVIEW OF RELATED WORK 

The descriptive chemistry of tantalum is dominated by the 

pentavalent complexes which make up the vast majority of com­

pounds studied to date. The tetrahalides of tantalum are well 

characterized, but quadrivalent derivatives are rare and only 

recently have they been examined closely. Niobium is more 

easily reduced from the 5+ oxidation state than is tantalum as 

will become evident from comparison of lower oxidation state 

halide derivatives which have been synthesized. A review of 

the chemistry of tantalum(IV) succeeded by enumeration of lower 

halide phases will provide adequate background for placing iso­

lation of a discrete tantalum(III) species in perspective. 

Although it has been stated that differences in the chemistry 

of tantalum and niobium are not profound (6), it would be naive 

to expect duplicate behavior for compounds of the two elements, 

and discrepancies are particularly marked for species of oxida­

tion state 4+ or less for the metals. The following account 

will illuminate the contrasting behavior of tantalum and nio­

bium in sundry cases. 

Reduction of Niobium(V) in Aqueous Solution 

Niobium(V) has been successfully reduced electrochemically 

in aqueous solution by Cozzi and Vivarelli (7) who found a re­

duction wave proportional to the niobium concentration in 

0.1 N nitric acid when niobic acid was electrochemically re­

duced. The same workers concluded that Nb(III) was the 
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ultimate product when Nb(V) was reduced in concentrated hydro­

chloric acid (8). An initial reduction to Nb(IV) was postu­

lated followed by disproportionation to Nb(III) and Nb(V). 

Addition of 10-20% by volume of ethylene glycol slowed the 

disproportionation reaction and Nb(IV) was then electrochem-

ically reduced to Nb(II) which in turn combined with Nb(IV) to 

form Nb(III) species and no further reduction occurred. Thus 

Nb(III) was the final electrochemical product both with and 

without added ethylene glycol. No evidence of electrochemical 

reduction has been found for any aqueous tantalum(V) system. 

Reduction of Nb(V) has also succeeded with various 

amalgams in acidic solutions (9). Zinc amalgam produced 

Nb(III) species in both hydrochloric and sulfuric acid solu­

tions. Cadmium amalgam also produced Nb(III) in hydrochloric 

acid, but reduction ceased at Nb(IV) in sulfuric acid solu­

tions. Oxidation state determinations on products of the 

amalgam reductions were performed via permanganate titrations 

for sulfuric acid media and ferric chloride titrations for 

hydrochloric acid media. Again the corresponding tantalum 

systems were not reduced under similar conditions. 

Descriptive Chemistry of Tantalum(IV) 

Tantalum dioxide, TaOg, has been prepared by high tempera­

ture (1700°C) carbon reduction of the pentoxide. Metal-metal 

bonding presumably plays a role in the solid state structure as 

in the case of NbO^ (10) where a distorted rutile structure 
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O 
allows metal atoms to pair in distances of 2.80 and 3.20A 

along the c-axis. At this point it should be noted that the 

metal-metal distance in both elemental niobium and tantalum 

is 2.85A. 

Niobium and tantalum tetrahalides are known for all the 

various combinations except for tantalum tetrafluoride which 

is conspicuous in its absence. In view of the stability of 

high oxidation state fluorides, the difficulty encountered in 

reducing NbFg, and the comparative facility of reducing nio­

bium compounds as compared to their tantalum analogues, the 

absence of TaF^ is easily rationalized. Niobium tetrafluoride 

has been formed at 300-350°C by reducing NbFg with powdered 

niobium metal (11). The black solid is unique among the tetra­

halides in that it is not diamagnetic. The magnetic proper­

ties of NbF^ are consistent with the solid state structure in 

which the niobium-niobium separations preclude bonding inter­

actions between metal atoms. 

Tantalum pentachloride is much more difficult to reduce 

than is its niobium counterpart. Schafer and Kahlenberg have 

described the synthesis of TaCl^ (12) while McCarley and Boat­

man have described a convenient preparation of TaBr^ involving 

aluminum foil as the reducing agent (13). The metal penta-

bromide can be formed from elemental tantalum and bromine 

followed by a temperature gradient reaction to form tantalum 

tetrabromide. Tantalum pentabromide at 250°C maintains a vapor 
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pressure of approximately 60 mm while aluminum foil at 500®C 

reduces the TaBr^ vapor to form TaBr^. The diamagnetic proper­

ties of all the niobium and tantalum tetrachlorides and tetra-

bromides are indicative of metal-metal bonding in the solid 

with concomitant pairwise grouping of the metal atoms. An 

x-ray study of niobium tetrachloride (5) confirmed the pair-

wise interaction in that case; the shorter niobium-niobium 

separation along the one-dimensional chain of edge-shared 
O 

octahedra was found to be 3.06A. The remaining chloride and 

bromide 4+ analogues appear to be isomorphous with NbCl^ based 

on powder pattern x-ray data (13). 

Niobium tetraiodide is easily prepared from Nbig by 

elimination of elemental iodine at 270°C in a sealed tube 

cooled at one end to condense the iodine (14). Although Nbl^ 

is not isomorphous with NbCl^, it has been determined that the 

structure does involve pairwise metal interactions with a 
O 

niobium-niobium distance of 3.31A between alternate pairs along 

the chain of octahedra (15). Once more the corresponding tan­

talum system requires more stringent conditions if reduction is 

to occur. Vapor phase reduction of Talg with aluminum metal in 

a gradient of 500°C (aluminum) to 350®C (tantalum pentaiodide) 

produces Tal^ over a period of seven days (13). A preferable 

route to tantalum tetraiodide utilizes Tal^(py)2, (py = pyri­

dine) , which quantitatively loses pyridine when evacuated at 

200®C for two days (13). 
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Relatively few tetrahalide adducts of tantalum have been 

reported. Typical preparations of chloride and bromide tetra­

halide adducts proceed in excess ligand over a period of sever­

al days. Fowles, Tidmarsh and Walton isolated TaX^L2 and 

TaX^B where B was bidentate 1,10-phenanthroline (phen) or 

2,2*-bipyridyl (bipy) and L was pyridine or acetonitrile for 

both X = CI and X = Br (16). Reaction times for 1,10-phenan­

throline might be considered typical: ten days for TaCl^ and 

five days for TaBr^ to form the adducts. Fowles also prepared 

the acrylonitrile derivatives TaCl^(CH2CHCN)2 and TaBr^fCHg-

CHCN)2 via tantalum tetrahalide and excess ligand reactions 

(Fowles and Gadd (17)). 

Reduction of Ta(V) occurs with some nitrogen donor ligands 

and adducts of Ta(IV) result, 4-Picoline reduced tantalum 

pentabromide over a period of five days at reflux to form 

TaBr^(4-picoline)2 while the corresponding chloride adduct 

formed in six days at room temperature (18). Five weeks of 

reacting TaClg and pyridine at 50°C did in fact lead to reduc­

tion and formation of TaCl^(py)2. Reduction also occurred with 

the bidentate ligands 1,10-phenanthroline and 2,2*-bipyridyl. 

McCarley and co-workers reported reduction of NbXg (X = CI, Br) 

by pyridine at room temperature while tantalum formed mono-

adducts without reduction (19). Identification of the oxidized 

organic species provided hitherto unattainable insight into the 

mechanism of reduction. Both niobium and tantalum pentaiodide 

were reduced by pyridine in the same study, but the oxidation 
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product was the elemental iodine adduct of pyridine rather than 

1-(4-pyridyl)pyridinium ion as was elucidated for NbXg (X = 

CI, Br). It seems clear that the stability of MI^(py)2 and 

py(l2) shifts the dissociation of MI g towards MI^ + 1/2 I^. 

To further emphasize the contrasts in chemical behavior 

of niobium and tantalum it is interesting that niobium(IV) 

adducts of tetrahydrofuran, tetrahydropyran and 1,4-dioxane 

were cleanly isolated while tantalum(IV) invariably led to 

intractable oils with the same ethers (16). 

The paramagnetism exhibited by adducts of both niobium CIV) 

and tantalum(IV) contrasts sharply with the diamagnetism asso­

ciated with the parent MX^, which is more informatively formu­

lated as M2Xg due to the metal-metal bonding present. Typical 

magnetic moments for NbX^L2 are in the range of 1.0 to 1.6 

Bohr magnetons, and TaX^L2 moments are commonly less than 1.0 

BM, probably due to the increased size of the spin-orbit 

coupling constant. 

Dialkyl sulfide ligands are of particular interest due to 

the stability of both the niobium(IV) adducts and the penta-

halide adducts of both niobium and tantalum. The selection of 

tetrahydrothiophene for use in the preparation of a reduced 

tantalum halide dimer was based on previous studies of adducts 

formed with sulfur donors. Fairbrother and Nixon (20) iso­

lated monoadducts of MXg (M = Nb, Ta; X = Cl, Br) with dimethyl 

sulfide and diethylsulfide by reaction of the neat ligand with 

the appropriate pentahalide. Tetrahydrothiophene was unique in 
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forming 2:1 complexes with these same pentahalides. Cowley, 

Fairbrother and Scott (21) had previously prepared 1:1 diethyl 

ether complexes which readily decomposed at 100*C to MOXj and 

CgHgX. The sulfide analogues displayed much greater thermal 

stability than the oxygen bound adducts and no decomposition 

to form MSXj was detected. Reactions of MXg with tetrahydro-

furan resulted in polymerization of the ether, so no direct 

comparison of the oxygen versus sulfur five-membered cyclic 

ligand was possible. Feenan and Fowles (22) later isolated 

1:1 adducts of tetrahydrothiophene (tht) with all four penta­

halides (Nb, Ta; Cl, Br), by utilizing a benzene dilutent. 

Pentamethylene sulfide, 1,4-dioxane and 1,4-thioxan were also 

employed as ligands in this report by Feenan and Fowles, but 

pentamethylene oxide polymerized as had tetrahydrofuran in 

earlier studies. Nuclear magnetic resonance spectra and infra­

red evidence were cited supporting coordination of thioxan 

through the sulfur atom rather than through the oxygen atom. 

The accumulated data, which includes sulfur-bound thioxan 

adducts, displacement of diethyl ether by diethyl sulfide, 

selective absorption of diethyl sulfide from a gaseous mixture 

of 10% (C2Hg)2S to 90% (€2^^)20 by NbClg, and greater thermal 

stability for sulfide adducts than ether adducts, clearly indi­

cates preferential bonding to sulfur by the pentahalides. The 

d° configuration of the pentavalent group V metals invalidates 

arguments of stability due to supplemental metal electron 

density donation into the vacant 3d-orbitals of sulfur which 
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are not available to first row donors such as oxygen. A 

review of sulfur containing ligands (23) addresses itself to 

the factors stabilizing metal-sulfur bonds and notes that 

polarizability and dipole moment considerations may favor 

sulfur coordination in some cases. 

In addition, dialkyl sulfides are of importance with 

respect to the stability exhibited by niobiumflV) adducts as 

investigated by Hamilton and McCarley (24). Diethyl sulfide, 

dimethyl sulfide and tetrahydrothiophene were employed in this 

study of niobium tetrahalide adducts. Although bis-adducts of 

(CH2)2S and SC^Hg and mono-adducts of (C2Hg)2S were cleanly 

prepared with niobium(IV), the tantalum tetrahalides reacted 

with the same dialkyl sulfides to produce only intractable 

tars. Steric requirements for diethyl sulfide rationalized 

mono-adduct formation in the niobium(IV) case and the minimal 

requirements of CS^Hg due to ring constraints could be impor­

tant in the 1:2 pentahalide adduct, MXg(SC^Hg)2. On the other 

hand, isolation of both niobium and tantalum tetrahalide 

adducts with ([^2)28 and SC^Hg was reported by Fowles, Tidmarsh 

and Walton (25). Utilizing benzene as a solvent and refluxing 

the tetrahalide with excess ligand for several days in a sealed 

tube led to products formulated as TaX^L2 (X = CI, Br; L = 

(00^)28, SC^Hg). Oils were produced initially but extensive 

evacuation while heating or alternatively distilling solvent 

on and off the oil several times eventually solidified the 

material. Characterization included elemental analysis, room 
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temperature magnetic moments, infrared and electronic absorp­

tion spectra. 

Reaction of lithium dialkylamides with tantalum penta-

chloride produced Ta(NR2)g (26) for a series of six different 

R = alkyl groups. The corresponding niobium system underwent 

reduction in increasing yields as the length of the alkyl 

chain increased and NbCNRg)^ was formed (27). Heating the 

Ta(NR2)5 compounds produced RN==rTa(NR2)3 so no reduction of 

tantalum(V) occurred even when a four coordinate complex was 

synthesized. Again it is important to notice the difference 

in chemistry as here tantalum(V) maintains its integrity which 

can be compared to the facile production of niobium(IV) under 

similar reaction conditions. 

The above compendium serves to document the fact that 

niobium and tantalum differ appreciably with respect to the 

reduction reactions interrelating the d° and d^ metal systems. 

The inability to reduce tantalum(V) in aqueous solutions, the 

facile reduction of niobium(V) by nitrogen donor ligands, the 

nonexistence of TaF^, the ease of preparation of Nbl^ from 

Nbig, and the difficulty experienced in isolating tantalum(IV) 

derivatives with dialkyl sulfide ligands and tantalum(V) 

derivatives with ethers all contribute to the overall depic­

tion of the vagarious behavior of tantalum as based on predic­

tions extracted from the chemistry of niobium under similar 

chemical conditions. 
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Niobium(III) and Tantalum(III) 

No trivalent complexes of tantalum have been confirmed in 

the literature to date. Discrete halide dimers of niobiumflll) 

have, however, been prepared by Broil, von Schnering and 

Schafer (28) via a sealed tube reaction between Nb^Xg and CsX 

or RbBr with production of the salts Cs^NbgXg (X = CI, Br, I) 

and Rb2Nb2Brg. The reactants were maintained at 640 to 690°C 

in the high temperature end of the quartz ampoule and the 

dimeric species then formed at the opposite end in a tempera­

ture range of 600 to 650°C. X-ray techniques confirmed the 3+ 

oxidation state and revealed a confacial bioctahedral struc­

ture for the Nb2Brg^ anion, that is, two octahedra sharing a 
O 

common trigonal face, with a niobium-niobium distance of 1.11k 
O 

for the bromide salt and 2.70A for the chloride salt. A mag­

netic moment of 2.68 BM as reported for Cs^NbgBrg is consistent 

with two unpaired electrons per dimer, such as would result if 

the four available d-electrons go into metal-metal bonding 

orbitals, the first two into a low energy nondegenerate 

orbital and the remaining two into degenerate orbitals. No 

description of the analogous tantalum(III) salts has ensued. 

Blight, Deutscher and Kepert reported the reaction of 

TaCl^ and acetonitrile and characterized the resultant green 

product as [TaCl^CCH^CN)2]2 (29), which formally appears to be 

tantalum(III). The proposed dimeric structure, based on the 

unusual structure found for [WClg(py)2]2 (30), involved a 
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tantalum-tantalum double bond to account for the observed 

diamagnetism of the dimer. More recently McCarley and co­

w o r k e r s  c o m m u n i c a t e d  t h e  c r y s t a l  s t r u c t u r e  o f  ( [ 2 N ) 2  

(NbgClgCCH^CNjgC^H^Ng) after a thorough investigation of the 

chemistry of tantalum and niobium tetrahalides in acetonitrile 

led to the above salt in elucidating the reaction products 

(31). While simple NbX^CCHgCNÏg adducts are formed in aceto­

nitrile as would be predicted (32) , the chemistry of tantalum 

digresses in a complicated reaction leaving 0-20% of the tan­

talum in an insoluble green precipitate and the remainder is 

lost in a red solution from which no products were isolated. 

Addition of zinc to the tantalum tetrahalide-acetonitrile solu­

tion substantiated the hypothesis that tantalum(III) resulting 

from disproportionation of tantalum(IV) was involved in the 

reaction producing the green solid as the yield increased to 

20-50%. Furthermore, addition of zinc to the niobium system 

produced similar green insoluble products and both metal halide 

solids had a chlorine:metal ratio of 3:1. Substitution of one 

acetonitrile per metal atom was accomplished in acetonitrile 

with bis(triphenylphosphine)iminium chloride and recrystalliza-

tion from acetonitrile-chlorobenzene solution provided crys­

tals of ([(CgH5)3P]2N)2(Nb2Clg(CH3CN)2C4HgN2)-2CgH5Cl suitable 

for x-ray diffraction studies. The culmination of the investi­

gation was the identification of a unique bridging ligand re­

vealed by the structure which resulted from the reductive 

coupling of two acetonitrile molecules and was accompanied by 
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oxidation of niobium to the 5+ oxidation state, where the 

bridging ligand is considered to be the tetraanion of 

H,C 
^ ^C=C^ ^ . 

«2" CH3 

It seems probable that the species isolated from earlier 

acetonitrile-TaCl^ work is a similar ligand-bridged tanta-

lum(V) dimer. 

Both niobium and tantalum form dark and unreactive hal-

ides of stoichiometry MXj. Tantalum trichloride and tribro-

mide display homogeneity ranges from TaX2 g to TaXg ^ thus 

resemble the niobium trichloride phase in which the halide to 

metal ratio varies from 2.67 to 3.13. Both the chloride and 

bromide TaXg phases can be prepared by the three temperature 

sealed tube method: tantalum metal at one end at 600-620°C, 

tantalum pentahalide at 320-365®C at the opposite end, and the 

central portion of the tube at 365-380°C where the trihalide 

is deposited (33). 

Tantalum trichloride is isomorphous with niobium tri­

chloride and the description of the tantalum trihalides is 

generally assumed to parallel that of the niobium trichloride 

phase which has been thoroughly investigated (34). Schafer 

and Dohmann prepared homogeneous crystals spanning the stoi­

chiometric range from NbClg to NbCl^ by chemical trans­

port methods starting with niobium metal and NbClg. After 

reaction of all the metallic niobium the residual NbClg vapor 
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and "NbClj" form NbCl^ in the high temperature section of the 

tube (390®C) which then diffuses and disproportionates to 

deposit NbCl^ at the low temperature end of the tube (355®C). 

The residual pressure of NbClg determines the stoichiometry of 

the final product. The color of the product changes gradually 

from green to brown as the stoichiometry passes from 2.67 

through 3.00 to 3.13, but x-ray powder patterns indicate 

retention of the basic crystal structure. 

A single-crystal x-ray structure determination of the 

NbClg gy phase (35) revealed a Cdlg-type layer lattice with 

3/4 of the metal sites occupied in agreement with the Nb^Clg 

composition. A magnetic moment of 1.86 BM is obtained based 

on the trimeric formulation thus indicating one unpaired elec­

tron per trimeric unit. Considering that a total of seven 

metal valence electrons are available for metal-metal bonding, 

one could conclude that six electrons are paired by inter­

actions among the three metal atoms. The niobium-niobium dis-
O 

tances, 2.81A for all three sides of the triangle, are clearly 

indicative of metal-metal bonding. Orderly removal of one of 

the metal atoms from each trimeric unit of Nb^Clg produces 

both the correct composition and solid state structure of 

NbgClg. The homogeneity range of niobium trichloride, of 

which NbClj q is merely an intermediate composition, results 

from statistical replacement of NbjClg units by NbgClg units 

throughout the lattice. For chloride to niobium ratios between 

3.13 and 4.00 a two phase system exists containing both 



www.manaraa.com

23 

NbClj 23 NbCl^. 

Preparation of Nb^Brg via a transport method similar to 

that described for Nb^Clg produces a-Nb^Brg which is isomor-

phous with the monomorphic Nb^Clg (36). Stoichiometric com­

bination of niobium metal and bromine at temperatures above 

500°C followed by recrystallization using vapor phase trans­

port techniques produces g-Nb^Brg, a second polymorph (37). 
O 

The metal-metal distance in g-Nb^Brg is 2.88A which is again 

compatible with the proposed bonding scheme. 

Although the tantalum trihalide phases are of variable 

composition, the range of homogeneity is much smaller than in 

the niobium case and indeed the tantalum analogue of Nb^Xg 

has never been isolated. 

Hexanuclear Taptalum Clusters 

Hexanuclear metal clusters of tantalum have been recog­

nized since Chapin correctly formulated TaBr2*2H^O and 

TaCl2 ' 2H2O as Ta^Xj^^'7H2O in 1910 (38). The chemistry of these 

octahedral metal clusters of niobium and tantalum has since 

been thoroughly investigated (39) and a detailed review would 

not be germane to the research topic under consideration. 

Nonetheless, the metal-metal bonded octahedra of tantalum 

atoms with halogen bridges along each edge forming 

(n = 2, 3, 4) cations provide further documentation of the pro­

pensity for homonuclear bonding interactions in low valent 

tantalum halides. 
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Anhydrous TaClg g and TaBrg g have been formed from reduc­

tion of the appropriate pentahalide with tantalum metal using 

a three temperature method (33,40). The structure consists of 

Ta^Xiz^^ units linked in a three dimensional array by bridging 

X" ions in the terminal positions of the octahedral cluster 

which is perhaps more clearly formulated as Ta^X^^X^yg' 

The solid structure of Ta^Br^^ and Ta^I^^ again involves 

hexanuclear clusters but only a two-dimensional array results 

from halide bridges in the plane of the metal octahedron, 

2 + 
MgXiz , with the correct formulation TagX^2^4/2 (41)' It is 

interesting to note that aluminum foil reduction of TaBr^ and 

Talg at elevated temperatures produces TaXg ^3 compositions 

while reduction of TaClg under similar conditions ceases at 

TaClg g (42). 

Hydrated tantalum hexanuclear clusters were first char­

acterized structurally in 1950 from x-ray studies of concen­

trated ethanolic solutions (43). The metal atom separations 

2 2 + 
in the regular octahedra of Ta^Cl^g and Ta^Br^g were esti-

O O 
mated to be 2.88A and 2.92A, respectively. ^a^X^^'THgO 

clusters do indeed have two ionizable halides per cluster as 

the bridging halides are retained in solution with the 

2 + 
TagXi2 unit surviving terminal substitution reactions as 

well as oxidation of the cluster to ^^6^12^* (44). 

Cotton and Haas have proposed a molecular orbital scheme 

(45) which is indicative of the results obtained by applying 

simple molecular orbital arguments to these highly symmetrical 
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clusters regardless of the exact assumptions involved. For 

a hexanuclear metal cluster with twelve doubly-bridging 

halides there are eight bonding molecular orbitals resulting 

from overlap of the available d-orbitals, and for tantalum 

clusters with an average oxidation state of 2.33 there are 

sixteen electrons in the metal valence orbitals which fit 

nicely to fill only these bonding orbitals. The average bond 

order is then 8/12 or 2/3 for TagXj^2^^* The magnetic proper­

ties of the oxidized species are in accord with the proposed 

bonding scheme, i.e. exhibits paramagnetic behavior 

consistent with one unpaired electron per six metal atoms. 

Organometallic Tantalum(III) 

Few organometallic derivatives of tantalum have been well 

characterized, but two tantalum(III) compounds have been de­

scribed in the organometallic literature. Refluxing a deuter-

iobenzene solution of (ir-CgH^) 2TaH2 evolves hydrogen gas and 

proton exchange occurs with the solvent. Addition of excess 

triethylphosphine to such a solution produces a red crystalline 

solid which has been identified as (ir-CgHg) 2Ta(H) (PEt^) (46) 

by analysis of its proton magnetic resonance spectrum in solu­

tion. A doublet of doublets at x = 5.68 is consistent with 

splitting of the cyclopentadienyl protons' resonance by the 

phosphorus and the hydride (Jp^ = 1.7, = 0.5, all coupling 

constants in Hertz). A five-line resonance at T = 8.91 results 

31 
from overlapping quartets as P splits these methylene reso­
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nances into a doublet and the methyl protons cause the quartet 

splitting (Jp^ = 7.0, = 7.5). The methyl resonance is 

31 
likewise split by P and the methylene protons (Jp^ = 13.5, 

JRH = 7.5) and five lines result from the overlapping triplets 

The metal hydride resonance appears as a doublet at T = 19.48 

due to coupling (Jp^ = 21). The integrated intensity 

ratios are 10:15.5:0.9 for the three basic regions of reso­

nance in agreement with two n-bound cyclopentadienyl ligands, 

one triethylphosphine and one hydride per metal atom. The 

above chemistry is consistent with the following scheme: 

-H2 -^ETJP 

(Tr-C5H5)2TaH3;^=^(Tr-C5H5)2TaH > (TT-C^Hg) 2Ta (H) (Et^P) 

-ArD +ArD 

^Ar -ArH 
(n-CrHc)-Ta^-D . Mir-CrHr)^TaD + ArH 

^ ^ +ArH ^ ^ ^ 

Another organometallic compound which contains tantalum 

(III) was briefly described in a communication reporting the 

crystal structure of [ Cir-CgHg)Nb (CO) (Ph2C2) ] 2 (47). The 

photochemical reaction of diphenylacetylene (Ph2C2) with 

(n-CgHg)Ta(CO)^ resulted in substitution of three of the carbon 

monoxide ligands to produce (TT-CgHg)Ta(CO) (Ph2C2) 2 • Thermal 

decomposition of this compound proceeded with dimerization and 

loss of one acetylene per metal atom. [(ïï-CgHg)Ta(CO)(Ph2C2)]2 

was isolated as a diamagnetic tantalum(III) dimer. The formal 

oxidation state can be derived by considering the oxidative 
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addition of Ta CI) across the carbon-carbon triple bond of the 

acetylene to form Ta(III). The structure of the corresponding 

niobium dimer was reported with a discrepancy factor of 13% 
O 

and a niobium-niobium distance of 2.74A which fits nicely with 

the postulated double bond required to satisfy the effective 

atomic number rule. This method of counting electrons to 

attain an inert gas configuration has been successfully applied 

to many organometallic compounds. 

Derivatives of niobium(III) of the type (ir-C^Hg) 2^'^^ (R = 

alkyl or allyl) have been characterized (48,49), but no data 

on such tantalum(III) compounds have been reported. 

An unusual trimeric tantalum cluster was synthesized by 

Fischer and Rohrscheid in 1966 (50). Trimetallic cations of 

Ti, Zr, Nb and Ta were isolated with the composition 

[(Me^C^)jMjCl^]^ (where Me^C^ is hexamethylbenzene) from 

aluminum reduction of metal halides in hexamethylbenzene in 

the presence of aluminum halides. The structure of (Nb^ 

(Me^C^)jClgJCl was revealed by x-ray diffraction techniques 
O 

(51) to consist of trimers with a distance of 3.33A separating 

adjacent metal atoms. Although there are eight total valence 

electrons in this organometallic trimer, the bonding descrip­

tion may in some ways parallel that of the Nb^Xg trimers where 

only seven electrons are available for metal-metal bonding. 

Recently a one-electron oxidation of the trimeric cation with 

Ce^*, N-bromosuccinimide, or Og has been reported to pro­

duce diamagnetic hexanuclear cluster compounds (52). 
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Nb2Xg(SC4Hg)3, (X = Cl, Br, I) 

The previous work most relevant to the tantalum dimers 

to be described is the corresponding niobium study made by 

Maas and McCarley (53). A detailed comparison of spectral and 

magnetic properties of the two systems will be appropriate as 

the results of the tantalum study are presented, and only the 

preparative procedure for the niobium dimer will be discussed 

at this time. The niobium(IV) tetrahydrothiophene adduct first 

isolated by Hamilton and McCarley (24) was reduced with sodium 

amalgam in a benzene solution to prepare Nb2X^(SC^Hg)^ (where 

X = CI, Br, I). Yields of 60-70% were reported for these 

neutral dimers which were soluble in nonpolar organic sol­

vents. Physical characterizations, which included proton 

magnetic resonance, magnetic susceptibility, electronic absorp­

tion spectra and infrared spectra were all consistent with a 

confacial bioctahedral structure; a later x-ray diffraction 

study (54) confirmed the postulated face-shared dimer with one 

bridging tetrahydrothiophene and two bridging halides. 

The diamagnetism exhibited over a wide range of tempera­

tures was consistent with a formal bond of order two joining 

2 
the two d metal atoms. Replacement of the sulfur containing 

ligands could be performed in a stepwise manner to obtain 

(Et^N) 2Nb2Clg(SC^Hg) via displacement of the two terminal 

tetrahydrothiophene ligands while under more rigorous condi­

tions (Et^N)3Nb2Clg was produced. Spectral properties indi­
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cated that (Et^NjgNbgClgCSC^Hg) was similar to the parent 

dimer, but major changes occurred in the electronic spectrum 

and magnetic susceptibility of the species upon replacement 

of the bridging tetrahydrothiophene when the completely 

chloride substituted dimer formed. Such changes are possibly 

due to the change in molecular symmetry accompanying the third 

chloride substitution, but no detailed rationalization was 

given. 
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EXPERIMENTAL 

The reactants and products of interest in this study were 

sensitive to moisture and oxygen due to the possibility of 

rapid hydrolysis and/or oxidation. Manipulations of solids 

were therefore performed in a nitrogen-filled drybox with a 

circulation system designed to remove moisture and maintain a 

dewpoint of -72°C which corresponds to 4 ppm Solvents 

were routinely dried prior to use, and standard vacuum line 

techniques were employed for transfer of solvents. Reactions 

were performed vacuo and crystalline products were stored 

in screw-capped vials in the nitrogen atmosphere of a drybox. 

Materials 

Tantalum metal was obtained in the form of sheets from 

laboratory stock. The metal was utilized to generate tantalum 

pentahalides for use as starting materials. 

Chlorine gas was purchased in lecture size cylinders from 

the Matheson Company. The cylinders were thoroughly outgassed 

at liquid nitrogen temperatures prior to use without further 

purification. 

Bromine from J. T. Baker Chemical Company was dried over 

anhydrous phosphorus pentoxide and stored under vacuum. The 

bromine storage vessel was submerged in liquid nitrogen and 

extensively evacuated before distilling the elemental halogen 

into the reaction vessel. 

Tetrahydrothiophene was purchased from Mathison, Coleman, 
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and Bell. It was dried either by stirring over lithium alumi­

num hydride or by setting over Linde 4A Molecular Sieves for 

several days. In either case the tetrahydrothiophene was 

stored over the drying agent in a round bottom flask equipped 

with a high vacuum Teflon needle valve. 

Benzene was refluxed over sodium metal to remove moisture 

prior to vacuum distillation into a storage flask containing 

niobium pentachloride to scavenge any remaining traces of 

water. Fisher Scientific was the source of reagent grade 

benzene. 

Toluene from J. T. Baker Chemical Company was utilized as 

a solvent. Molten sodium metal served as an effective drying 

agent in refluxing toluene. The solvent was then stored over 

sodium and distilled prior to use. 

Mercury was obtained from the triply distilled laboratory 

stock and was used without further purification. 

Sodium metal from J. T. Baker was stored in the drybox. 

Sodium was cut and handled under nitrogen or in evacuated 

vessels to avoid premature oxidation in the preparation of 

sodium amalgam. 

Analytical Procedures 

The tantalum content of compounds synthesized during the 

course of this work was determined gravimetrically as the 

oxide, TagOg. Typical samples of 100 to 200 mg were loaded in 

screw-capped vials in the drybox and accurately weighed by 
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difference into tared porcelain crucibles. The samples were 

wet with acetone and then hydrolyzed in aqueous ammonia. After 

heating to aid digestion, dilute nitric acid was added to 

acidify the solutions and oxidation proceeded as the crucibles 

were gently heated to dryness. Final conversion of the hydrous 

tantalum oxide to the pentoxide was effected by ignition in a 

muffle furnace at 600°C for several hours. 

Halides were determined by potentiometric titration util­

izing a silver sensitive working electrode with a saturated 

calomel reference electrode. Samples underwent basic hydroly­

sis followed by acidification to pH 1 with nitric acid prior 

to titration with a standard silver nitrate solution. 

Mr. J. J. Richard of the Ames Laboratory Analytical Ser­

vice Group, Iowa State University of Science and Technology, 

Ames, Iowa, performed carbon and hydrogen analyses on selected 

samples. 

Synthesis 

Large amounts of tantalum pentachloride and tantalum 

pentabromide were prepared by direct halogenation of the metal 

at elevated temperatures. Tantalum metal sheet was cut into 

thin strips and loaded in the center portion of an elongated 

reaction tube. The appropriate halogen was then vacuum dis­

tilled into one of the receptacle bulbs on either end of the 

tube and the vessel was sealed off under vacuum. The vapor 

pressure of the halogen was controlled with a cold bath while 
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the metal was oxidized by halogen gas in the high temperature 

region and sublimed to the cooler sections as metal penta-

halide. The reaction tube was broken open in the drybox where 

the products were stored for later use as reactants. 

Sodium amalgam was prepared in an evacuated vessel by 

dropwise addition of 241 grams of mercury per gram of sodium 

metal. Typically two to three grams of sodium were weighed 

into the glass cylinder in the drybox and a cap with two stop­

cocks, one connected to the cup-shaped well for addition of 

mercury, sealed the tube. After evacuation of the container 

through the unhindered stopcock the calculated amount of 

mercury was slowly added while the sodium remained iji vacuo. 

The amalgamation process is very exothermic, but after an ini­

tial flash the reaction proceeds smoothly with no danger of 

excessive heat generation. Water baths were avoided due to 

the potential hazard presented by the metallic sodium. Such 

a preparation produced an amalgam consisting of 3.5 mole per 

cent sodium which was stored in the drybox until needed. 

Tantalum pentahalide and tetrahydrothiophene served as 

reactants for a one-step synthetic procedure which led to the 

isolation of TagX^CSC^Hg)^ where X = CI, Br. In a typical 

preparation TaClg (3.6 g, 10 mmoles) was loaded into the 100 

ml reaction flask with a Teflon coated stirbar in the drybox 

and sodium amalgam (100 g, 20 mmoles) corresponding to a two 

to one mole ratio of sodium to tantalum was funneled into the 

sidearm bulb. The sidearm was then carefully inserted into 
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the receptacle joint of the flask to avoid premature addition 

of the mercury solution. A vacuum line adapter equipped with 

a Teflon needle valve capped the round bottom flask before it 

was transported to the vacuum line. After thoroughly out-

gassing the flask, approximately fifty ml of dry aromatic sol­

vent, either benzene or toluene, was condensed onto the penta-

chloride at liquid nitrogen temperatures. If allowed to warm 

to room temperature at this point a light yellow solution re­

sulted as a small amount of the white starting material dis­

solved. Dry tetrahydrothiophene was first distilled into a 

graduated cylinder, suitably modified for vacuum manipulations, 

to assure excess ligand. The cyclic sulfide (3 ml, 35 mmoles) 

was then distilled into the reaction vessel where a bright 

orange solution resulted from dissolution of the tantalum pent-

achloride as the 1:1 adduct formed almost instantaneously. 

Addition of the reducing agent was then initiated by rotating 

the sidearm to elevate the bulb and drain the amalgam into the 

solution which was being vigorously mixed with a magnetic 

stirrer. All of the sodium amalgam was poured into the solu­

tion within a few minutes and a series of color changes fol­

lowed. Within thirty minutes the solution stabilized as a 

dark. Burgundy wine-colored liquid containing the soluble di-

meric tantalum product. At this point the volatile components, 

notably toluene or benzene and excess ligand, were removed from 

the heterogeneous reaction mixture by vacuum evaporation. The 
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solid products and liquid mercury were removed from the flask 

in the drybox where a mechanical separation of phases was 

attempted. Finely dispersed mercury tended to coalesce into 

droplets when ground with the dry solids in a mortar and décan­

tation at this time separated most of the liquid metal. The 

remaining traces of mercury were transferred with the solids 

to an extractor suitable for high vacuum usage. Fresh aromatic 

solvent solubilized the desired product and a continuous ex­

traction process effected a complete separation of Ta2Cl^ 

(SC^Hg)j from the mercury and insoluble by-products, which 

consisted of sodium chloride and a small amount of some uniden­

tified powder. Prolonged extraction periods of several days 

were often required as insoluble particles tended to clog the 

frit. Slow solvent evaporation from the extractor left nicely 

crystalline trisCtetrahydrothiophene)hexachloroditantalum which 

was dark red violet in color. The analogous blue-violet or 

plum colored bromide dimer was isolated in the same manner, or 

alternatively both halide derivatives could be more conven­

iently purified by using a slightly modified reaction vessel. 

The union of a second 100 ml flask to the original was accom­

plished with an inverted, hollow U-tube and upon completion of 

the reaction this allowed a preliminary division of the soluble 

material and co-products by alternately decanting the colored 

solution into the vacant flask and then distilling the solvent 

back into the reaction products. When no further color was 

evident in the reaction portion of the vessel the solvent was 
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Figure 1. Modified reaction vessel for preparing Ta2X5(SC4H8)3 
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distilled away and the products were transported to the drybox 

where by-products were discarded and the soluble fraction was 

placed in an extractor. The extraction now proceeded rapidly 

and the highly colored substance was completely solubilized in 

a few hours. Further recrystallization of the product was 

possible by cooling a toluene solution which had been saturated 

at room temperature. Anal. Calcd. for TagCl^CSC^Hg)^: Ta, 

43.13; Cl, 25.34; C, 17.18, H, 2.88. Found: Ta, 42.49; Cl, 

24.80; C, 17.04; H, 3.16. Calcd. for TagBr^CSC^Hg^g: Ta, 

32.73; Br, 43.35; C, 13.03; H, 2.19. Found: Ta, 33.21; Br, 

42.33; C, 13.15; H, 2.44. 

Physical Measurements 

Proton magnetic resonance spectra were obtained with 

either a Varian A-60 or a Hitachi Perkin-Elmer R-20B spectrom­

eter. The crystalline material to be investigated was loaded 

in the drybox into a specially designed cell equipped with a 

sintered glass frit and adapted for vacuum line use. Several 

milliliters of an appropriate solvent and a trace of tetra-

methylsilane were then distilled into the cell and the solution 

was saturated at room temperature prior to filtration into the 

sample tube. The solvent was then distilled back through the 

frit and the procedure was repeated to assure a saturated solu­

tion in the probe at ambient temperature. The tube was sealed 

under vacuum while the solution remained frozen in liquid 

nitrogen. Chemical shifts were measured in ppm relative to 
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TMS at 6 = 0. 

Solution electronic spectra were obtained using a Gary-

Model 14 Recording Spectrophotometer and an evacuable cell 

similar to that utilized for the preparation of nuclear mag­

netic resonance samples. By carefully weighing the apparatus 

before and after the solid was added in the drybox and weigh­

ing a third time after addition of the solvent via distilla­

tion the concentration of the solution could be calculated when 

all of the solid was dissolved. The extinction coefficients of 

low intensity bands could then be determined and successive 

dilutions allowed the remaining extinction coefficients to be 

computed by intensity comparisons with the previously charac­

terized bands utilizing a Beer's Law assumption. 

The Faraday balance used to measure room temperature sus­

ceptibilities has been adequately described by Converse (55). 

An Ainsworth analytical balance reading to 0.01 mg measured 

the force at each of five field strengths monitored during 

each run. Calibration of the apparatus was carried out with 

nickel ammonium sulfate hexahydrate as a standard after recrys-

tallization from aqueous solution and analyses for nickel con­

tent and cobalt impurities verified the composition of the 

crystals. The samples of interest were placed in screw-capped 

Teflon buckets under an inert atmosphere and no decomposition 

was detected when the contents of the container were examined 

upon completion of the magnetic measurements. Corrections to 

the raw data were made on the basis of the previously deter­
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mined bucket susceptibility so that only the force resulting 

from the sample was considered in later computations. 

Infrared spectra of the solids were obtained as Nujol 

mulls. A Beckman IR-11 spectrophotometer was employed with 

thin polyethylene sheets as transparent sample holders for the 

region from 700 cm ^ to 100 cm ^. Absorptions from 600 cm ^ to 

4000 cm"^ were monitored with either a Beckman IR-7 or Beckman 

IR-12 instrument and Csl or NaCl windows. Nujol was stored 

over sodium in the drybox where the mull was prepared as a 

thick paste and applied to the salt plates, which were conse­

quently sealed in an 0-ring fitted sample holder. The sample 

was transported to the instrument in a nitrogen filled jar and 

spectra were obtained quickly with no evidence of decomposition. 

Nuclear quadrupole resonance spectra were obtained with a 

Wilks NQR-IA superregenerative spectrometer as described in 

detail by Edwards (56). More accurate frequency measurements 

for resonances in the region of 5 to 50 MHz were possible with 

the wide line induction spectrometer designed by Torgeson (57). 

Frequencies from 5 to 350 MHz were accessible with the oscilla­

tor circuits and associated sample coils of the Wilks instru­

ment. Samples were sealed iji vacuo in 15 mm outside diameter 

tubes after being loaded in the drybox; several grams of mate­

rial were required to fill the tube to a sufficient depth such 

as to fully occupy the space inside the sample coil. A sys­

tematic scanning procedure was initially employed in searching 

for resonances, i.e. 5 to 20 MHz for chlorine and 40 to 100 MHz 
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for bromine. Resonance locations were estimated and checked 

before a slow scan was employed to allow accurate frequency 

values to be measured via superposition of a generated signal 

onto the oscilloscope display of the oscillator signal. 

Single crystal x-ray diffraction data was collected after 

selection and mounting were completed in the crystal mounting 

drybox kindly made available by Professor John Corbett. Prom­

ising crystals were loaded in 0.2 mm thin-walled Lindemann 

capillaries and sealed with a hot nichrome wire in the drybox. 

Preliminary Buerger precession exposures and Weissenberg 

photographs were made with nickel-filtered Cu radiation. 

Unit cell parameters were calculated from accurate diffractom-

eter settings of three independent reflections whose centers 

were located by left-right, top-bottom beam splitting on a 

previously aligned four-circle diffractometer designed and 

built for the Ames Laboratory under the direction of Professor 

R. A. Jacobson. This same diffractometer was used to measure 

the integrated intensities of all data within a 20 sphere of 

45° with a graphite monochromator passing only Mo radiation 
O 

of wavelength 0.71069A. Computer controlled data collection 

operated a 0-29 scan mode at a counting rate of 0.2048 seconds 

per step of 0.01° in 0 with a variable scan range of 50 steps 

plus 2 steps per degree 0. Stationary-crystal, stationary-

counter background measurements were made at the beginning and 

end of each scan for half the total scan time. The intensities 

of three standard reflections were measured every fifty reflec­
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tions during the data collection as a general check on elec­

tronic and crystal stability. Data reduction and analysis of 

the structure factors were completed with the aid of computer 

programs generously maintained and made available by the x-ray 

crystallography group at the Ames Laboratory under the guid­

ance of Professor R. A. Jacobson. 
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RESULTS AND DISCUSSION 

Synthesis 

Previous work had shown that preparation and isolation o£ 

NbX^(SC^Hg)2 (where X = CI, Br or I) furnished suitable nio-

bium(IV) species for a one-electron reduction with a sodium re­

ducing agent in the form of an amalgam. The solubility of 

these niobium(IV) adducts in benzene made possible the hetero­

geneous reduction across the amalgam-solution interface with 

the resultant production of the dimeric niobium(III) species, 

NbgX^CSC^Hg)^ (53). The highly unusual oxidation state exhib­

ited by niobium in these compounds produced informative chem­

ical investigations. The complete absence of any discrete 

tantalum(III) species made the analogous tantalum system per­

haps of even greater interest. Unfortunately the intractable 

products resulting from interaction of tantalum(IV) halides 

with tetrahydrothiophene precluded isolation and characteriza­

tion of TaX^(SC^Hg)2 thus a one-electron reduction route to 

tantalum(III) was not available. In addition, it was known 

that the anhydrous trihalides of tantalum were unreactive and 

unsuitable for starting materials in the preparation of dis­

crete molecular tantalum(III) compounds. 

The greater tendency towards disproportionation displayed 

by tantalum(IV) as compared to niobium(IV) could explain some 

of the difficulties encountered with tantalum(IV) systems, yet 

in no way would this allow one to conclude that Ta(III) would 
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be inaccessible or intractable. On the contrary, one might 

consider the disproportionation of Ta(IV) to be a harbinger of 

Ta(III) stability; rigorously the data can only be interpreted 

as indicating that the combined stability of Ta(III) and Ta(V) 

is greater than that of Ta(IV) and in some instances reaction 

pathways exist for just such a conversion to occur. 

The synthetic approach employed in the preparation of tan-

talum(III) was simple and direct rather than sophisticated or 

intricate. The reactants selected were soluble tantalum(V) 

halide mono-tetrahydrothiophene adducts to which two moles of 

sodium were added per mole of tantalum. In anticipation of a 

tetrahydrothiophene to metal ratio of 1.5 to 1.0 in the final 

product, excess ligand was present in the solution to assure 

that adequate sulfide was available for coordination during 

the reaction. A series of color changes following addition of 

the sodium amalgam was evidence that a reaction was proceeding 

through several intermediate species. Precipitation of sodium 

halide occurred as a consequence of elemental sodium oxidation 

and halide ion extraction and these observations in conjunction 

with the intensely colored aromatic solution pointed to the 

existence of a soluble reduced tantalum compound. The solu­

bility of the reduced species made it amenable to chemical 

purification via extraction techniques, and analytical data on 

the purified solid was consistent with the formulation [TaX^ 

(SC^Hg)^ g ]^. The relative rate of the reaction was slightly 

surprising in view of the heterogeneous system involved. 
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Yields of 75% were typical for the production of reduced chlo­

rides and bromides best described as TagX^CSC^Hg)^. 

Another trivalent tantalum compound of interest would be 

3 
a salt containing the Ta2Xg anion which has not been prepared 

by any route to date. The corresponding dimeric niobium anion, 

Nb2Clg^", was prepared via a high temperature sealed tube reac­

tion (28) or by chloride ion substitution of the neutral sulfur 

donor ligands present in Nb2Clg(SC^Hg)j (53). While an excess 

of (C2Hg)^NCl reacted with Nb2Cl^(SC^Hg)^ in CH2CI2 to form an 

insoluble gray crystalline product characterized as [(C2Hg)^N]2 

NbgClg (53) , the tantalum dimer failed to undergo metathesis in 

the same manner. Excess tetraethylammonium chloride (12:1 = 

chloride ;dimer) reacted with Ta2Clg(SC^Hg)2 in CHgClg to form 

a mixture of several insoluble powders as well as a soluble 

orange-pink product. It seemed likely that dichloromethane was 

not acting as an inert solvent but was perhaps involved in 

oxidation of the reduced tantalum species in this reaction. In 

order to employ a less reactive solvent, such as toluene, it 

was necessary to use tetrabutylammonium chloride as a reactant 

for solubility purposes. Attempted metathesis reactions with 

this cation produced only oils upon solvent removal by vacuum 

evaporation. More stringent reaction conditions were also 

employed unsuccessfully. Molten tetrabutylammonium chloride 

(100*C) was used as a reaction medium with Ta^Cl^fSC^Hg)^ for 

several days and cesium chloride was reacted with the tantalum 

dimer in liquid hydrochloric acid, both to no avail. 
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A cursory examination o£ the probable molecular orbitals 

present in the face-shared octahedra dimer, as Confirmed by 

x-ray investigations, suggested reduction of the dimer should 

be possible. Analysis of confacial bioctahedral structures of 

3-
Djh symmetry confirms that species can exist, such as WgClg , 

with a triple bond between the two d^ metal atoms. If one were 
T ̂  

to imagine TagClg as a compound with molecular orbitals sim­

ilar to those in one could then perform the Gedanken 

process of tstrahydrothiophene substitution for three of the 

chloride ions to obtain the neutral dimer with the accompany­

ing transformation from symmetry to The method of 

descending symmetry allows one to follow the degenerate molecu­

lar orbitals as they are transformed into nondegenerate 

orbitals in the lower symmetry and a qualitative ordering of 

the energy levels in the lower symmetry can be based on the 

more definitive high symmetry case. 

A thorough discussion of bonding in metal-metal bonded 

dimers will be presented when the detailed structural results 

are examined, but at this time a brief rationale for the syn­

thetic reduction attempts is appropriate. The point to be made 

in comparing WgClg^" and TagCl^CSC^Hg)^ is that the tungsten 

d^ case puts six electrons into bonding orbitals and hence the 

resulting metal-metal triple bond. In W2Clg^" these orbitals 

2 consist of one a and two TT bonds while in the tantalum d case 

only four electrons are available for metal-metal bonding 

orbitals. Although the C2v symmetry applicable to the tantalum 
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dimer no longer constrains the two IT orbitals to be energeti­

cally equivalent, it would seem most probable that in fact 

both of these molecular orbitals remain as bonding orbitals. 

Based on this logic the lowest unoccupied orbital in the tan­

talum dimer should be a bonding molecular orbital between the 

two metal atoms. It would then seem plausible to add one or 

two more electrons to the dimer and increase the tantalum-

tantalum bond strength, but sodium amalgam proved to be incap­

able of effecting further reduction of the isolated dimer. 

Proton Magnetic Resonance 

The proton magnetic resonance of neat tetrahydrothiophene 

exhibits two areas of resonance corresponding to the methylene 

protons adjacent to the heteroatom in the five-membered ring 

and protons on the methylene groups further removed from the 

sulfur atom. For purposes of discussion these protons will be 

labeled type b and type a, respectively, as illustrated in 

Figure 2. The type a resonance is in the form of an inexact 

quintet at 6 1.87 (relative to TMS at <S 0) and the type b pro­

ton resonance appears as a skewed triplet at lower field (6 

2.74) due to electron density withdrawal from the carbon atoms 

adjacent to the more electronegative sulfur atom. The five-

membered cyclic thioether is nonplanar and thus second order 

couplings dominate the spectrum and lead to the observed trip­

let and quintet structures. 

Although the chemical shifts are influenced by dilution 
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with organic solvents (58), the splitting pattern remains un­

changed. Benzene solutions of tetrahydrothiophens shift the 

quintet upfield to 6 1.47 and the triplet also moves upfield 

(6 2.54). Slight downfield shifts are observed with carbon 

tetrachloride as a solvent; type a protons are centered at 

6 1.92 and type b protons are centered at 6 2.76. 

The nmr spectrum of TagCl^CSC^Hg)^ was obtained from a 

saturated benzene solution with TMS as an internal standard. 

The spectrum revealed four multiplets due to tetrahydrothio-

phene in the complex of interest as shown in Figure 3. Two 

triplets were present at low fields with an integrated inten­

sity ratio of one to two and two quintets were present at 

higher field with the same intensity ratio. None of the ob­

served resonances were attributable to free tetrahydrothio-

phene and the conclusion reached was that tetrahydrothiophene 

was present in the molecular species in two different environ­

ments in a ratio of two to one. The above nmr data was com­

bined with the analytical results, which indicated a multiple 

of the composition TaCl^(SC^Hg)g, to postulate a dimeric 

species, Ta2Clg(SC^Hg)^, analogous to the niobium dimers char­

acterized by Maas (59). In the postulated confacial biocta-

hedron one tetrahydrothiophene serves as a bridging ligand 

while two are terminally coordinated to opposite metal atoms 

and six halogen atoms complete the coordination spheres by 

occupying the remaining four terminal positions and two bridg­

ing positions. 
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A similar distribution of three dialkyl sulfide ligands 

was proposed for Rh2CCH2)^l2(S(CH2)2)3 as early as 1966 on the 

basis of nmr data (60). A later x-ray structure confirmed the 

dimeric nature of the rhodium species with the ligands located 

as predicted (61). In the rhodium dimer the terminal dimethyl 

sulfide ligands exhibited proton resonances as a doublet at 

6 2.45 due to ^^^Rh (I = 1/2) coupling. The bridging dimethyl 

sulfide resonance was only one half as intense as the terminal 

resonance and existed as a triplet due to coupling to two 

equivalent metal atoms. Thus the nuclear spin of one half for 

103 
the one hundred per cent naturally abundant Rh isotope con­

siderably simplified interpretation of the nmr spectrum where 

doublet and triplet splitting patterns resulted from coupling 

to one and two rhodium atoms, respectively. The location of 

the bridging dimethyl sulfide resonance was indeed lower than 

the terminal resonance, 6 2.53 compared to the aforementioned 

6 2.45, but the difference of only 0.08 ppm was considered a 

small shift. The methyl protons of dimethyl sulfide produce 

one sharp singlet in deuteriochloroform at 6 2.14 (62), so one 

can gauge the impact of coordination of the sulfur atom on the 

methyl proton chemical shift to range from 0.3 to 0.4 ppm in 

the rhodium dimer case. It should be noted that Rh(III) has 

a d^ configuration which is incompatible with metal-metal bond 

formation, and indeed the separation reported in the structure 
O 

communication was a long 3.38A between rhodium atoms in the 

dimer. 
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In analyzing the nmr spectrum of the tantalum complex it 

was possible to extend the rhodium dimer interpretation in 

order to account for the observed multiplicities and intensi­

ties even though no metal-proton coupling was observed. The 

intensity ratio of one to two for both the two low field trip­

lets and the two upfield quintets was entirely consistent with 

a tantalum dimer analogous to the rhodium dimer, where all the 

uninegative ligands present in the rhodium case are replaced by 

halide ions and tetrahydrothiophene ligands replace dimethyl 

sulfide. The observed downfield shift of the bridging tetra­

hydrothiophene resonances is consistent with an inductive 

effect removing electron density from the methylene protons as 

the sulfur lone pair electrons are donated into metal-ligand 

bonds. The formation of two dative bonds from the bridging 

ligand would remove more electron density than the single bond 

formed by the terminal sulfides. Thus the difference of 0.56 

ppm between bridging type b and terminal type b chemical shifts 

can be satisfactorily explained. Such a rationalization tends 

to overlook the similarity of chemical shifts found for bridg­

ing and terminal dimethyl sulfide ligands in the rhodium dimer, 

where a difference of 0.08 ppm was observed. It is tempting 

to speculate that vacant d-orbitals on the sulfur atom are 

available for backbonding in both dimers, but only in the elec­

tron rich rhodium species is there a significant electron 

density shift back to the donor atom from the metals. In the 

d case of the tantalum dimer the metal valence electrons are 
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stabilized by the bonding interactions between the metals, 

thus decreasing further any chance of back donation. The 

rhodium d^ system could, on the other hand, neutralize the 

inductive effect of the o-bond electron donation from sulfur 

by back-bonding to the dimethyl sulfide ligand through a n-

interaction. The observation that the chemical shift of di­

methyl sulfide methyl protons changes less upon coordination 

to rhodium for both bridging and terminal ligands than the 

type b methylene proton resonance of tetrahydrothiophene 

changes upon coordination in either a bridging or terminal 

position of the tantalum dimer is consistent with the hypothe­

sis that the total electron withdrawal from the sulfide ligand 

is less in the rhodium dimer. 

The clear separation of the upfield quintets in TagCl^ 

(SC^Hg)^ is somewhat unexpected in view of the distal location 

of the type a methylene protons relative to the metal-sulfur 

interaction. The resolution of these two quintets in the tan­

talum dimer contrasts the overlapping multiplet present in the 

niobium spectrum as seen in Figure 4. Thus the nmr data leads 

one to conclude that the type a methylene protons of the bridg­

ing tetrahydrothiophene communicate more intimately with the 

sulfur-metal dative bonds in the tantalum case than in the 

niobium case. Although it is possible that dissimilarities in 

the metal atomic orbitals are responsible for the difference in 

behavior no highly plausible explanation has been uncovered. 

The relevant proton magnetic resonance data is summarized in 
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Figure 4. nmr spectrum of a saturated solution of Nb2Clg(SC^Hg)^ in benzene 



www.manaraa.com

54 

Table 1 for both Ta2Cl^(SC^Hg)^ and Ta^Br^iSC^Hg)^. 

Magnetic Susceptibility 

The Faraday method was utilized to determine the room 

temperature susceptibilities of the two tantalum dimers in the 

solid state. The results are listed in Table 2 where the mag­

netic susceptibility of NtgCl^CSC^Hg)^ is listed for compara­

tive purposes. The observation of well resolved nuclear mag­

netic resonance spectra indicated the absence of paramagnetic 

species and indeed the bulk susceptibility of the dimers was 

found to be diamagnetic overall. A diamagnetic correction 

factor based on Pascal's constants was applied to the observed 

susceptibility (63) and the resultant was a small paramagnetic 

contribution. Such a small positive susceptibility was similar 

to that of Nb2Cl^(SC^Hg)2 as established by a temperature de­

pendent study. By analogy with the niobium case this value of 

the corrected susceptibility was attributed to temperature 

independent paramagnetism. This interpretation is consistent 

with a diamagnetic ground state in which all of the electrons 

are paired while an admixture of excited states via quantum 

mechanical perturbation theory introduces a small amount of 

paramagnetism. This paramagnetism is distinguished from un­

paired electrons by the lack of temperature dependence. Al­

though the corrected susceptibility values are small in magni­

tude and therefore have fairly large relative errors associated 

with them the expected trends are nonetheless observed. An 
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Table 1. Proton magnetic resonance data for Ta2Xg(SC^Hg) 

X = CI X = Br 

Assignment 5" Relative intensity 

1.39 1.39 

1.45 1.45 

type "a", terminal 1.51 1.50 2 

1.54 1.55 

1.60 1.60 

1.69 1.86 

1.75 1.91 

type "a", bridging 1.80 1.98 1 

1.85 2.03 

1.91 2.09 

3.09 3.19 

type "b", terminal 3.21 3.30 2 

3.30 3.41 

3.65 4.02 

type "b", bridging 3.77 4.11 1 

3.88 4.23 

^Spectra obtained from saturated benzene solution at 
ambient temperatures. 

^Chemical shifts are relative to TMS in ppm. 
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Table 2. Magnetic susceptibility data* 

Compound lO^D "''<cor 

emu/g emu/mole emu/mole emu/mole 

- . 33 -276 -371 +95 

-.24 -254 -431 + 177 

-.28 -187 -380 + 193 

Solid samples were used for susceptibility measurements. 
Abbreviations: Xapp = apparent susceptibility per gram; 
XM = molar susceptibility = molecular weight times apparent 
susceptibility; XD = calculated diamagnetic susceptibility per 
mole; Xcor = corrected susceptibility = X^-XD' 

^Data taken from reference 53. 
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inverse energy separation dependence is predicted by perturba­

tion theory, because the excited paramagnetic state contribu­

tion to the ground state is inversely proportional to the 

energy difference between the two states. Chloride ion typi­

cally exhibits greater ligand field strength than bromide and 

the third row transition metals are known to undergo larger 

energy splittings than first or second row metals, so the 

qualitative energy predictions are consistent with the meas­

ured magnitudes of the temperature independent paramagnetism: 

TagCl^CSC^Hg)^ has a smaller value than Ta2Br^(SC^Hg)j and 

TagCl^CSC^Hg)^ has a smaller value than NbgCl^CSC^Hg)^. The 

diamagnetic behavior of the tantalum dimers could be inter­

preted as a direct consequence of metal-metal bonding in which 

the four metal valence electrons are paired; other consistent 

interpretations are possible, but the nmr data discussed pre­

viously in conjunction with later characterizations confirm 

the metal-metal double bond hypothesis. 

Electronic Spectra 

Electronic spectra of TagCl^CSC^Hg)^ and TagBr^CSC^Hg)^ 

were obtained in benzene solutions. Band maxima and extinction 

coefficients are listed in Table 3 as well as the corresponding 

data for NhgClAfSC^Hgjg and NbgBr^CSC^Hg)^ for comparative 

purposes. Although it would be satisfying to draw a molecular 

orbital diagram and assign the experimentally observed transi­

tions, in truth there is sufficient data such that only a few 
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Table 3. Electronic absorption band parameters^ 

Ta^Cla TagBr* Nb^Cl* (SC.Hj),!' Nb2Brg 

v,kK^ cd v.kK^ ed V ,kK^ ed VpkK^ 

9.5 17 8.5 22 9.1 3 8.0 3 

11.0 29 9.6 28 11.5 5 10.5 8 

14.8 300 13.6 320 13.1 8 11.9 11 

20.5 4000 19.4 5300 18.4 430 17.4 600 

^Spectra obtained in benzene solutions. 

^Data taken from reference 53. 

^IkK = 1000 cm'l. 

^Molar extinction coefficients are in units of £mole~^cm~^. 
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generalizations can be safely expounded. 

The similarity among the four spectra is quite striking, 

and it therefore seems highly probable that the gross elec­

tronic structure of all four is the same. The spectrochemical 

relationship between chloride and bromide mentioned in regard 

to temperature independent paramagnetism is again evident in 

the electronic spectra. The energy level separations show a 

clear trend in both the tantalum and niobium compounds to in­

crease from bromide to chloride, as well as exhibiting the 

expected tendency towards larger energy spacings for tantalum 

than for niobium. 

The extinction coefficients show similar trends for 

corresponding bands in both metal species, that is, they vary 

in tandem, but one quickly notes that the absolute values dif­

fer greatly. The tantalum compounds regularly exhibit extinc­

tion coefficients almost an order of magnitude larger for 

comparable wavelength absorptions than the niobium analogs. 

While no quantitative explanation has been forthcoming, it 

seems likely that the increased value of the spin-orbit coup­

ling constant for tantalum, a third row transition metal, as 

compared to niobium, a member of the second row, must play an 

important role in determining the oscillator strength of 

electronic transitions. 

A few further comments concerning the magnitude of the 

extinction coefficients and the likely origins of the observed 

transitions are in order. For an isolated octahedral complex 
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electronic transitions within the d-orbital manifold are 

Laporte forbidden due to the inversion symmetry inherent in 

the d-orbitals themselves. Such Laporte forbidden bands are 

typically found to have extinction coefficients on the order 

- 1 - 1 
of 10 &mole" cm' , largely due to intensity resulting from 

vibronic coupling. Bands that are also spin forbidden (AS^O) 

in such monomeric octahedral complexes are found to be perhaps 

100 times less intense than the spin allowed transitions, so 

that extinction coefficients might be on the order of 0.1 

fi-mole'^cm"^. In spectra recorded for the dimeric tantalum 

_ 1 _ 1 
species the smallest extinction coefficient is 17 &mole cm 

and the values range upward to 5300 Amole ^cm ^ for the 19.4 

kK band in TagBr^CSC^Hg)^. This range of intense absorptions 

is consistent with a metal-metal interaction which destroys 

the applicability of simple monomeric selection rules. Indeed 

metal clusters are commonly highly colored, and the reason 

cited most frequently is the effective overlap of the metal 

d-orbitals to form molecular orbitals which by their parentage 

encompass the highest occupied molecular orbital and the lowest 

unoccupied molecular orbital. It then follows that electronic 

transitions will ordinarily be limited to this arena of metal-

metal interactions. The incorporation of atomic orbitals from 

both metal atoms into molecular orbitals eliminates the Laporte 

restrictions which determine the oscillator strength in mono­

meric complexes, and the result is more intense absorption 

bands. One could speculate that the two lowest energy bands 
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-1 -1 with extinction coefficients near 20 Amole cm are spin-

forbidden and gain intensity via spin-orbit coupling, although 

there is no firm basis for such a conclusion. The two transi­

tions at higher energy could then be interpreted as spin-

allowed with the observed 10 to 100-fold increase in intensity 

in agreement with theoretical predictions. 

Nuclear Quadrupole Resonance 

Nuclear quadrupole resonance spectra of the halogen nuclei 

were successfully obtained for both tantalum(III) dimers under 

investigation. Although no attempt will be made to present the 

theory of nuclear quadrupole resonance (nqr) spectroscopy, it 

will be necessary to introduce several terms and equations in 

order to discuss the results at hand. Excellent books concern­

ing the theory and instrumentation of nqr have been written by 

Lucken [64) and Das and Hahn (65). 

The interaction between a non-spherical nucleus with an 

electric quadrupole moment (eQ) and an inhomogeneous electric 

field gradient due to the asymmetry of surrounding electrons 

(eq) establishes nondegenerate nuclear spin states. A 

Boltzmann distribution accurately describes the unperturbed 

ground state, and these nuclear spin states differ only slight­

ly in energy so radiofrequency radiation is appropriate for 

absorption spectroscopy. The field gradient is a traceless 

tensor and it is therefore adequately described by only two 

parameters after diagonalization. The two quantities q and n, 
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as defined in Equations 1 and 2, completely define the electric 

field gradient since Equation 3 imposes a third constraint on 

the three variables. The asymmetry parameter n varies between 

< 1 ^ 4  ( 1 )  

n . - 4)/4 (2) 
9x 9y 9z 

9x 9y 9z 

limits of 0 and 1 and serves as a gauge to the extent of dis­

tortion of the electric field gradient from axial symmetry. 
•zc 77 Vq 

Both CI and CI have a nuclear spin of 3/2, as do Br 

81 and Br, all accompanied by a nonzero nuclear quadrupole 

moment. A single transition from the degenerate +1/2 energy 

levels to the degenerate + 3/2 levels can therefore theoreti­

cally be observed for any chlorine or bromine atom with a non­

zero electric field gradient in a crystalline solid. The 

energy levels for a nuclear spin of 3/2 (I = 3/2) can be 

written in closed form for the most general case (64) as 

listed in Equations 4 and 5. 

E . (1+ = Asd* (4) 
41(21-1) 3 4 3 

E = ~ — (1+ !1?.)^/2 ^ -e^Qq^^. (g) 
^ 41(21-1) 3 4 3 
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The frequency of energy absorbed in a transition from m = ^ 1/2 

to m = 3/2 will then be determined by the difference in the 

above energy levels and Planck's well-known relationship, AE = 

hv. In the axially symmetric case n = 0 and the transition 

AE = ^^(1+ (6) 

V = ®^(i+ (7) 
2h 3 

2 frequency equation reduces to v = e Qq/2h. It should be noted 

that Q is a constant for a given nucleus so the only variables 

in any particular case will be q and n. Since only one exper­

imental value is obtained for nuclei with 3/2 spin the magni­

tudes of q and n cannot be determined in the general case, but 

if n is zero due to symmetry imposed axial equivalence then q 

is easily calculated from the observed transition frequency. 

Table 4 lists the resonance frequencies found for chlo­

rine nuclei in TagCl^CSC^Hg)^ and bromine nuclei in TagBr^ 

(SC^Hg)^. Identification of all the reported resonances was 

37 
confirmed by location of the mated resonance, either CI or 

79 
Br, at the frequency calculated on the basis of the ratio of 

the nuclear quadrupole moments, Q79g^/Q81g^ ~ 1.1971 and 

Q35ci/Q37CI = 1-2688 (66). 

A survey of the six resonances in the Ta^Br^tSC^Hg)^ case 

divides the absorptions into two types based on the frequency 

differences. The four lowest frequency values span a range of 

1.92 MHz and the two high energy absorptions differ by 2.47 



www.manaraa.com

64 

Table 4. Nuclear quadrupole resonance data for Ta^Cl^(SC.Hg)^ 
and TazBr^CSC^Hgjg ^ ° 

Compound Isotope Frequency (MHz) Assignment 

TagClaCSC^Hg)^  35^1  9 .230  terminal 

9.286 terminal 

9.356 terminal 

10.321 bridging 

10.623 bridging 

Ta^Br^CSC^Hg)] ®^Br 62.78 terminal 

63.22 terminal 

63.83 terminal 

64.70 terminal 

71.47 

73.94 

bridging 

bridging 
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MHz while a much larger gap, 6.77 MHz, separates the two 

types. Such a distribution of energies can be clarified by 

examining not only nonequivalent atoms on the molecular level, 

but also the nonequivalency of atoms based only on their posi­

tions in the solid state lattice. The lattice contribution to 

the electric field gradient is expected to be small relative 

to the effects of molecular nonequivalences, and the multipli­

city and spacing of the lines observed in TagBr^CSC^Hg)^ lends 

itself to interpretation on this basis. For early transition 

metal halides containing both terminal and bridging halogens 

the bridging halogens typically absorb energy at a higher fre­

quency than the terminal halogens. One can thus visualize a 

confacial bioctahedral structure for TagBr^CSC^Hg)^, such as 

was described in analyzing the pmr spectrum, and the four 

terminal bromides and the two bridging bromides correspond in 

an enticing 1:1 fashion with the observed nqr spectrum. The 

magnitude of the frequency variations between the groups of 

four and two clearly distinguish between the terminal and 

bridging halogen ligands, and this furnishes a key piece of 

evidence in unraveling structural possibilities. The hope of 

profitable extension of this type of nqr analysis to other 

solid metal halide compounds that are often difficult to char­

acterize by classical techniques is promoted by these results. 

The x-ray structure of TagBr^CSC^Hg)^ later confirmed the 

nqr interpretation as only one independent dimer was found in 

the unit cell and hence the multiplicities were correct for 
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both chemically nonequivalent atoms and chemically equivalent 

atoms in nonequivalent lattice positions. 

The analysis of the nqr spectrum of TagCl^CSC^Hg)^ is 

similar although the multiplicities are not quite so neatly 

related to the molecular confacial bioctahedral structure. 

The frequency distribution is again clearly indicative of both 

terminal and bridging atoms with the three lower resonances 

separated by 0.13 MHz, then a gap of 0.94 MHz, and finally two 

resonances within 0.30 MHz. The two observed bridging reso­

nances are consistent with one independent molecule per unit 

cell, but only three terminal resonances are observed while 

four would be predicted; certainly this is not a serious dis­

crepancy. 

The relative positions of bridging and terminal halogen 

resonances have been discussed by various authors in terms of 

the importance of back n-bonding from terminal halogen lone 

pair electrons into the vacant d-orbitals of the metal atom. 

An important consideration in any rationalization must be the 

reversal of positions for group III metal halide bridged 

dimers where the electric field gradient is larger for the 

terminal halogen atoms than for the bridging atoms (64). 

Without indulging in the rigors of a mathematical treatment it 

should be evident that the aluminum atoms in AlgBr^, for exam­

ple, are incapable of accepting electron density from the 

unshared electron pairs present on the terminal bromines since 

the four available valence orbitals of A1 are all fully 
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involved in a-bonding to the ligands. The early transition 

metal dimers, on the other hand, have vacant valence d-orbitals 

which are appropriately located to participate in n-inter-

actions with terminal halogens. 

The existence of TT-interactions has been documented for a 

series of hexahalometallates (67) and indeed the resonant fre­

quencies of halogens are very responsive to the extent of 

electron donation from the unshared halogen electron pairs to 

the metal. A simple qualitative description of the origins of 

the electric field gradient clarifies the balance between a 

and IT contributions. The molecular coupling constant, 

2 
Ie Qlljnoi» can be related to the atomic coupling constant, 

|e Qqlatom' "unbalanced p" factor designated as U^. For 

the axially symmetric case the major contribution to the halo­

gen electric field gradient comes from the p-orbitals electron 

occupancy and is given by Equation 8, where N is the elec­

tron density of the orbital in question. 

"p = 

The role of can be illustrated by examining CI , where 

all three p-orbitals are fully occupied and therefore = 0, 

and Clg, where the occupancy of p^ is decreased to one as a 

result of the symmetrical o-bond and hence Up = 1. The experi­

mental resonance frequency will thus vary from a theoretical 

value of zero for the spherically symmetric case to a value of 

3 5 
54.9 MHz for CI in the limiting case of a single nonpolar 
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a-bond. If only a-bonding were important in all cases the 

observed frequency would correlate directly with the bond 

polarity, but this is not the case. Since je Qql^^^ deter­

mines the nuclear quadrupole resonance frequency it is the dif­

ference in p and p as reflected in N _ and which is ^TT pz px py 

crucial rather than the absolute magnitude of these components. 

Increased covalency in the metal-halogen a-bond causes an in­

crease in the nqr frequency, but increased ir-bonding decreases 

the frequency. In the dimeric species studied here the lower 

frequencies observed for terminal halogens are probably 

attributable to increased n-donation from these ligands while 

the bridging ligands are dominated by o-interactions only. 

An interesting interplay between a and n electron donation 

by halide ions is demonstrated nicely by a comparison of the 

nqr results for tantalum(V) halide dimers (68) with the tanta-

lum(III) dimer results of this study. As the oxidation state 

of the metal increases greater covalency is expected in the 

metal-halogen bonds, or more crudely one can visualize a shift 

from chloride ion behavior towards chlorine-like bonding behav­

ior. If only a-bonding is important, as is the case for bridg­

ing halides, the higher oxidation state should promote higher 

frequency absorptions than the lower oxidation state due to the 

increased covalency of the a-bond which effectively decreases 

N and thereby increases U . A comparison of the bridging 
P 

halogen resonance locations in Table 5 shows that such a varia­

tion occurs between TaCV) and Ta(III). One also notices that 
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Table 5. Comparison of halogen nqr frequencies in Ta(III) and Ta(V) compounds^ 

Compound TagCl^CSC^Hg)^ ^^2^^10 ^^2®^10 

Bridging v(MHz) 10.321 13.334 71.47 90.13 

10.623 13.356 73.94 90.32 

13.377 90.43 

Terminal v(MHz) 9.230 7.598 62.78 55.02 

9.286 7.641 63.22 55.15 

9.356 7.663 63.83 55.28 

8.141 64.70 56.19 

8.231 56.69 

8.261 56.96 

cL 81 
Data for TagCl^g and Ta2Brj^Q taken from reference 68; Br frequencies 

were calculated from ^^Br frequencies by the division factor 1.1971, "^glg ~ 
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the terminal resonances display exactly the opposite behavior; 

they tend to decrease as the oxidation state of the metal is 

increased. The introduction of a significant ir-contribution 

allows one to consistently explain this apparent paradox. In­

deed N will decrease for both terminal and bridging halogens 
P 2 

as the metal is oxidized, but only for the terminal halogens 

will and also decrease as electron density is shared 

via the ir-interaction. If the total change in ir-donation 

exceeds the a-donation change upon oxidation then will 

actually decrease, and this is evidently the case for the 

terminal halogens in Ta2X^(SC^Hg)^ and Ta2^lO ~ CI, Br). 

Infrared Spectra 

Infrared spectra were obtained in the region of 700-1400 

cm'l utilizing salt plates and a Beckman IR-7 instrument suited 

for optimal operation over that range of energies while poly­

ethylene sheets and a low energy Beckman IR-11 were employed 
_ 1 

for absorption spectra spanning energies from 100-700 cm 

It will be convenient to extend these arbitrary divisions into 

the discussion of the infrared data since metal-ligand vibra­

tions will be limited to energies well below 700 cm ^ and most 

of the intraligand vibrations will be in the fingerprint region 

from 700 to 1400 cm ^. 

Table 6 lists the absorptions evident from 700 to 1400 

cm ^ for the two tantalum dimers as well as data for other 

tetrahydrothiophene containing complexes of interest. It 
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Table 6. Tetrahydrothiophene infrared frequencies (700-1400 cm"l)& 

SC4H8 , Ta2Cl6 TazBre NbzCle Nb2Br6 NbCl4 , 
(in CSg)* (SCiHgYs (SC4Hg)3 (SCiHg);^ (SCiHgjsC (SC^Hg)? 

800 s(sh) 801 m 
816 m 809 s 810 s 810 s 806 m-s 

872 m 
882 s 883 s 881 s 886 s 882 s 881 m 

956 s 958 s 959 s 958 m-s 960 m 
967 m 968 s 964 s 

996 s 999 vw 
1023 w 1027 w-m(sh) 1021 w 1025 w 

1035 w-m 1039 m 1038 m 1041 m 1037 w-m 1038 w 
1060 w-m 1060 vw 

1075 m 1073 m 1072 w-m 1075 w-m 
1082 w 1082 w 1083 m 1082 w 

1129 w-m 1126 s 1127 s 1129 s 1125 m-s 1128 w-m 
1128 s 1132 s(sh) 

1189 w(sh) 1194 w-m(sh) 
1197 m 1200 m 1199 m 1203 m 1200 w 1193 w 
1215 w(sh) 1214 w 1211 m 1214 m 1211 w-m 1214 w-m w(sh) 

1248 m(sh) 
1256 s 1257 s 1255 s 1256 s 1252 m 1254 m 

1308 
1268 s 1268 s 1270 m-s 1267 m 1267 w-m 

1308 w-m 1307 s 1306 s 1308 s 1306 s 1308 w-m 
1322 w 1320 w 1326 w 

1329 w 1330 vw 

^Spectra obtained from Nujol mulls unless otherwise noted. Abbreviations: 
s, strong; m, moderate; w, weak; sh, shoulder. 

^Reference 69. 

^Reference 59. 
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should be noted that the only absorptions above 1400 cm ^ were 

those near 3000 cm ^ due to carbon-hydrogen stretching modes. 

The major conclusion to be drawn from these data is that, at 

least to the extent detectable via infrared measurements, 

tetrahydrothiophene is coordinated in a normal manner in these 

dimers. The term normal here is only meant to imply that the 

ligand retains its integrity while datively bonding through 

the sulfur atom. 

A second and slightly more subtle observation involves 

the splitting of several infrared bands in the dimers, and 

particularly noteworthy is a comparison of data for TagBr^ 

(SC^Hg)^ and Nb2Br^(SC^Hg)^ • Four single bands in the niobium 

spectrum are split in the tantalum case, and it may be that 

whatever factors were operative in displacing the two quintets 

from one another in the nmr spectrum of the tantalum dimer 

also play a role in splitting the vibrational bands in the 

bridging and terminal ligands more clearly for tantalum than 

for niobium. Thus both the infrared and nmr data are consis­

tent with the premise that the properties of bridging versus 

terminal tetrahydrothiophene vary more within the tantalum 

dimer than in the niobium analog. 

Spectral data in the low frequency region offers the pos­

sibility of more information with regard to metal-ligand bond 

strengths, but positive identification of vibrational bands is 

inherently difficult and interpretation of the low frequency 

infrared data should be undertaken with considerable caution. 
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Table 7. Low frequency infrared data for Ta2Cl6(SC4Hg)3 and 
Ta2Brg(SC4H8)3 (100-700 cm"!)* 

^*2^16(^^4^8)3 Ta2Br@(SC^Hg)3 

1 0 6  vw , V broad 1 2 4  m 

1 2 0  s 1 7 2  m 

1 3 0  m, broad 2 0 7  vs , sh 

1 5 8  m 2 1 4  vvs 

1 8 7  m, sharp 2 2 7  vs 

2 0 4  w 2 3 8  s ,  sharp 

2 1 3  w 3 3 1  m 

2 2 6  m 4 7 7  w ,  broad 

2 4 2  vw , broad 5 0 6  s ,  sharp 

2 7 1  m 5 1 8  m 

3 2 0  vvs 6 2 2  w 

4 3 2  w ,  broad 6 4 2  vw 

4 7 6  w 6 6 3  m, sh 

5 1 0  s , sharp 6 7 0  s 

5 1 7  m, sh 

6 2 7  w, sh 

6 4 6  w, sh 

6 6 4  s ,  sh 

6 6 9  s 

Spectra obtained from Nujol mulls unless otherwise 
noted. Abbreviations: s, strong, m, moderate; w, weak; v, 
very; sh, shoulder. 
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The most definitive band assignment in this region is the 

C-S ring stretch which occurs at 683 cm"^ in the free tetra-

hydrothiophene molecule (70). Upon coordination this band 

_ 1 
shifts to somewhat lower frequencies, typically 660-670 cm 

(69). A strong doublet is seen in both Ta2Clg(SC^Hg)^ and 

Ta2Br^(SC^Hg)2 between 660 and 670 cm ^; this splitting is 

probably due to slightly different C-S stretching frequencies 

for the bridging and terminal tetrahydrothiophene ligands. It 

was noted previously that several single bands in the 700-1400 

cm"^ region in the niobium dimer were split in the tantalum 

case and the C-S stretch is another example of such behavior, 

further confirming the strong bonding present in the tantalum 

dimer tetrahydrothiophene bridge. 

The identification of metal-halogen stretching bands can 

be made confidently in the region of 320 cm ^ for TagCl^ 

(SC^Hg)^ and 214 cm ^ for Ta2Br^(SC^Hg)^. The large dipole 

associated with these bonds is expected to absorb infrared 

radiation very effectively and hence the most intense bands in 

the low energy portion of the spectrum were assigned to metal-

halogen vibrations. The tantalum(III) bromide containing dimer 

actually exhibits three strong bands in this region, 207, 214 

and 227 cm which could all be attributed to metal-bromide 

stretching modes since the molecular C^^ symmetry is suffi­

ciently low that more than three of the metal-halogen normal 

vibrations are infrared active. In the chloride dimer the 

band at 320 cm ^ is extremely broad and intense, but no struc­
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ture is evident. The frequency ratio between 320 cm"^ and 

214 cm'l is appropriate for a change in mass from chloride 

to bromide with retention of similar force constants. The 

energy of a vibration theoretically changes as the square 

root of the mass ratio, and in this case = 1.5 and 

320 cm ^/214 cm ^ = 1.5. 

Prudence dictates that no further bands be assigned in 

this region even though it would be quite informative to 

locate metal-sulfur vibrations for both bridging and terminal 

tetrahydrothiophene ligands as well as distinguish between 

bridging and terminal metal-halogen vibrations. Such defini­

tive vibrational analyses seem inappropriate until further 

data is available. Particularly for the metal-sulfur stretch­

ing vibrations the amount of literature data is not sufficient 

to provide adequate data for interpretations based on compar­

able systems. 

X-ray Structural Determination of TagBr^CSC^Hg)^ 

The x-ray structure determination of a single crystal of 

Ta^Br^CSC^Hg)^ successfully revealed the molecular configura­

tion of the dimer. Crystals examined by precession and Weis-

senberg film techniques exhibited 1 Laue symmetry indicative 

of a triclinic space group. No systematic absences were 

observed. The unit cell parameters at ambient temperature 

were a = 12.08A, b = 12.74A, c = 8.98A, a = 83.98°, 3 = 112.45°, 

and Y = 105.40°. 
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A single crystal suitable for data collection was selected 

after recrystallization from toluene. Approximate dimensions 

of the crystal were 0.06x0.08x0.40 mm along the a, b, and c 

axes, respectively. Drybox techniques were used to mount the 

crystal in a Lindemann glass capillary with the needle (c) 

axis of the crystal parallel to the spindle axis. All data 

within a 26 sphere of 45® were collected in each of four 

unique octants. A total of 3216 possible reflections were 

monitored. 

The intensities of three standards were measured every 

fifty reflections during the data collection period. The 

intensities of these three standards uniformly decreased to 

twenty per cent of their original intensity before data collec­

tion was terminated. A linear least squares fit of intensi­

ties of the standard reflections versus the number of data 

points monitored was made using a weighting factor of 1/C^ for 

the intensities (C^ = total counts). The correlation coeffi­

cient was greater than 0.99 for each of tie three plots indi­

cating the validity of the fit. The average slope of I/I^ 

versus n (where I = intensity, = initial intensity and n is 

- 4 the number of data points monitored) was -2.47x10 . Thus the 

data fit linear Equation 9 which can be rearranged to scale 

the data to the original intensity as expressed in Equation 10. 

I/I^ = 1 - 2.47xl0"^-n (9) 

IQ = 1/(1-2.47xl0"^-n) (10) 



www.manaraa.com

77 

The intensities were scaled by the factor K(n) = (1-2.47x 

lO'^'n)"^ before further data reduction. The error introduced 

by this scaling procedure can be incorporated into the expres­

sion for [o(I)]^ as follows: 

[a(I)]2 = K^C^+K^C^j+(C^-C^)^a^+(0.3KC^)^+C0.3KC^)^ 

where K is the scale factor, is the absolute error in the 

scale factor, and Cy is the background count. The intensity 

data were also corrected for Lorentz-polarization effects. 

The estimated standard deviation in each structure factor, 

was calculated by the finite difference method (71). 

These standard deviations were used during the least-squares 

refinement to weight the observed structure factors where w, 

the weighting factor, was defined as l/[a(F^)] . Transmission 

factors ranged from 0.20 to 0.30 perpendicular to the needle 

axis based on a linear absorption coefficient of 198.9 cm ^. 

The extensive data manipulation required to correct for crystal 

decay seemed more likely to limit the quality of the data than 

did absorption problems, and refinement was initiated without 

absorption corrections. Successful location and refinement of 

all nonhydrogen atoms confirmed the minor contribution of 

intensity variations due to absorption and no corrections were 

ever applied. A total of 1930 data points were used for re­

finement with corrected intensity ̂  3CT(F). 

Examination of the Patterson function, which was calcu­

lated from sharpened data, led to ready location of the two 
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asymmetric tantalum atoms present in each unit cell. The suc­

ceeding structure factor and electron density map based on the 

tantalum phasing allowed locations to be determined for the 

bromine and sulfur atoms and successive cycles led to location 

of the carbon atoms. 

These positions were refined by full-matrix least-squares 

techniques (72). Anisotropic refinement of the non-carbon 

atoms led to a conventional discrepancy factor R = Z||F^ - [ 

1FC11/E|FO| = 0.069 and a weighted R factor of R^ = [ZW(|FQ|-

1 I ) ̂/2w(F^) = 0.070. The scattering factors were those 

of Hanson e^t aj. (73), with tantalum, bromine, and sulfur modi­

fied for the real and imaginary parts of anomalous dispersion 

(74). The final positional and thermal parameters are listed 

in the Appendix along with their standard deviations as derived 

from the inverse matrix of the final least-squares cycle (75). 

The final values of F^ and F^ are also tabulated in the Appen­

dix. 

The molecular structure is depicted in Figure 5. Param­

eters of interest including bond distances, nonbonded intra­

molecular distances, and angles are listed in Tables 8, 9 and 

10,respectively. The structure shown in the figures confirms 

the oxidation state of 3+ for each of the tantalum atoms in 

this complex. The earlier review of lower oxidation state 

tantalum compounds clearly established the significance of the 

first structural confirmation of a discrete tantalum(III) 

halide compound. The structure is best described as a con-
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Figure 5. A perspective view o£ the 50% probability thermal ellipsoids of the 
TagBr^CSC^Hg)^ molecular unit 
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O 
Table 8. Bond distances in Ta2Brg(SC^Hg)^, A 

Ta-Ta 

Ta(l)-Br(5) 
Ta(l)-Br(6) 
Ta(2)-Br(5) 
Ta(2)-Br(6) 
Average Ta-Br^^.^g^ 

Ta(l)-Br(l) 
Ta(l)-BrC2) 
Ta(2)-Br(3) 
Ta(2)-Br(4) 
Average Ta-Br^eminal 

Ta(l)-S(l) 
Ta(2)-S(l) 
Average Ta-Sj^^.^g^ 

Ta(l)-S(2) 
Ta(2)-S(3) 
Average Ta-S^,ruinai 

S(l)-C(l) 
S(l)-C(4) 
S(2)-C(5) 
S(2)-C(8) 
S(3)-C(9) 
S ( 3 ) - C C 1 2 )  
Average S-C 

C(l)-C(2) 
C(2)-C(3) 
C(3)-C(43 
C(5)-C(6) 
C(6)-C(7) 
C(7)-C(8) 
C(9)-C(10) 
C(10)-C(ll) 
C(11)-CC12) 
Average C-C 

2.710(2) 

2.611(3) 
2.647(4) 
2.630(3) 
2.643(5) 

2.633 

2.519(4) 
2.519(4) 
2.519(5) 
2.507(3) 

2.516 

2.396(10) 
2.390(10) 

2.393 

2.620(9) 
2.627(10) 

2.624 

1.869(43) 
1.901(35) 
1.900(39) 
1.840(37) 
1.849(41) 
1.825(59) 

1.864 

1.61(6) 
1.37(7) 
1.57(7) 
1.53(5) 
1.45(5) 
1.60(5) 
1.50(7) 
1.31(9) 
1.52(8) 

1.50 
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O 
Table 9. Nonbonded distances in Ta^BrgCSC^Hg)^, A 

Br(l)-Br(2) 3.848(6) 
Br(3)-Br(4) 3.904(6) 
Average Br-Br^erminal-terminal 3.876 

Br(l)-Br(5) 3.686(5) 
Br(3)-Br(5) 3.611(6) 
Br(2)-Br(6) 3.626(6) 
Br(4)-Br(6) 3.643(6) 

Average Br-Br^erminal-bridging 3.642 

Br(5) Bf(G)bridging-bridging 3.298(5) 

SCl)-Br(l) 3.438(9) 
SCl)-Br(2) 3.507(12) 
S(l)-Br(3) 3.455(11) 
S(l)-Br(4) 3.458(11) 

Average ^bridging ^^terminal 3.465 

S(l)-Br(5) 3.862(9) 
S(l)-Br(6) 3.902(13) 
Average ®^bridging 3.882 

S(2)-Br(l) 3.539(12) 
S(2)-Br(2) 3.509(9) 
S(3)-Br(3) 3.366(13) 
S(3)-Br(4) 3.622(10) 

Average Sterminal-B^terminal 3.509 

S(2)-Br(5) 3.464(11) 
S(2)-Br(6) 3.506(9) 
S(3)-Br(5) 3.445(10) 
S(3)-Br(6) 3.649(11) 

Average Sterminal-Bfbridging 3.516 
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Table 10. Angles (degrees) within Ta^Br^CSC^Hg)] 

Ta-bridge-Ta angles 
Ta(l)-Br(5)-TaC2) 
Ta(l)-BrC6)-Ta(2) 
Ta(l)-S(l)-Ta(2) 

bridge-Ta-bridge angles 
Br(5)-Ta(l)-Br(6) 
Br(5)-TaC2)-Br(6) 

Br(5)-Ta(l)-S(13 
Br(5)-Ta(2)-S(l) 
Br(6)-Ta(l)-S(l) 
Br(6)-Ta(2)-S(l) 

Br-Ta-Br angles 
Br(l)-Ta(l)-Br(2) 
Br(3)-TaC2)-Br(4) 
Br(l)-Ta(l)-Br(5) 
Br(2)-Ta(l)-Br(6) 
Br(3)-Ta(2)-Br(5) 
Br(4)-Ta(2)-Br(6) 

62.3(1) 
6 1 . 6 ( 1 )  
69.0(3) 

77.7(1) 
77.4(1) 

100.8(3) 
100.4(2) 
101.3(3) 
101.5(3) 

99.6(2) 
1 0 2 . 0 ( 2 )  
91.9(1) 
89.1(1) 
89.0(1) 
90.0(2) 

S-Ta-Br angles 
S(l)-Ta(l)-Br(l 
S(l)-Ta(l)-Br(2 
S(2)-Ta(l)-Br(5 
S(2)-Ta(l)-Br(6 
S(2)-Ta(l)-Br(l 
S(2)-Ta(l)-Br(2 
S(l)-Ta(2)-Br(3 
S(l)-Ta(2)-Br(4 
S(3)-Ta(2)-Br(5 
S(3)-Ta(2)-Br(6 
S(3)-Ta(2)-Br(3 
S(3)-Ta(2)-Br(4 

88.7(3) 
91.0(3) 
82.9(2) 
83.5(3) 
87.0(3) 
86.1(2) 
89.4(3) 
89.8(2) 
81.9(2) 
87.6(3) 
81.7(3) 
89.7(2) 

trans angles 
S(l)-Ta(l)-S(2) 
S(l)-Ta(2)-S(3) 
Br(5)-Ta(l)-Br(2) 
Br(5)-Ta(2)-Br(4) 
Br(6)-Ta(l)-Br(l) 
Br(6)-Ta(2)-Br(3) 

174.4(3) 
170.8(4) 
163.7(2) 
165.1(2) 
1 6 6 . 6 ( 1 )  
163.9(1) 
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facial bioctahedron where the dimer can be visualized as two 

octahedra joined across a common trigonal face with the three 

bridging ligands equally shared. A distinctive feature of 

this particular confacial bioctahedron is the participation 

of one tetrahydrothiophene ligand in the bridge bonding; the 

other two sulfur ligands are trans to the unique sulfide on 

separate metal atoms. The confacial bioctahedral formulation 

is distorted from symmetry due to the presence of dissimi­

lar ligands, notably three tetrahydrothiophene rings and six 

bromines. Disregarding the ring carbon atoms an effective 

symmetry of pertains to the dimer and this symmetry group 

will be appropriate for later molecular orbital considerations. 
O 

The tantalum-tantalum distance of 2.710(2)A is consistent 

with the presence of a strong metal-metal bond, formally of 

bond order two since a total of four electrons are involved in 

the metal-metal interaction. The internuclear separation of 
O 

2.85A in elemental tantalum metal serves as a point of refer-

® 2 + 
ence, as do tantalum-tantalum distances of 2.88A in (Ta^Cl22) 

(43), 2.92A in (Ta^Brig)^* (43), and 2.96A in (TagC1^2^^'^ (76) 

where the average formal bond orders are 2/3, 2/3 and 7/12, 

respectively. The length of the metal-metal distance is the 

most commonly used criterion for bonding, but, as was noted in 

the introduction, other parameters may be equally informative 

in accurately depicting the strength of the interaction. 

Cotton and Ucko (77) have published a survey of metal-metal 

interactions in confacial bioctahedra of symmetry and the 
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moduli they present can be slightly modified and applied to 

the Cgy symmetry of the tantalum dimer. 

Three moduli of general applicability described by Cotton 

and Ucko are derived from an idealized geometry involving two 

congruent octahedra joined to form a confacial bioctahedron; 

the bridging and terminal bonds are equal in length, the metal 

atoms lie in the center of their respective octahedra, all 

cis-ligands are 90.0® apart, and the symmetry is as a con­

sequence of this construction. The moduli are then defined in 

terms of deviations from this idealized structure based on 

axial contraction or elongation due to metal-metal attraction 

or repulsion. 

The displacement of metal atoms along the C^-axis can be 

conveniently described by the ratio of d' to d" where d' is 

the distance from the plane of the three bridging atoms to the 

metal and d" is the distance from the plane of the three ter­

minal atoms to the bonded metal atom. Structural parameters 

such as d' and d" are defined in Figure 6 for the case of a 

general confacial bioctahedron. In the idealized model d'/d" = 

1.0, but there is no special chemical significance to this 

value of unity. In fact, the underlying repulsive forces that 

are inevitably present between two metal atoms require that a 

d' to d" ratio of one be associated with attractive metal-metal 

forces. For the tantalum dimer the three planes defined by 

ligands encircling the metal-metal axis are not parallel due 

to long bonds to the terminal tetrahydrothiophenes. The three 
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Figure 6. A general illustration o£ the confacial bioctahedral parameters d*, 
d", a', and 6 
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bridging ligands do, however, define a plane perpendicular to 

and bisecting the metal-metal bond, and this reference plane 

allows one to calculate a d'/d" value based on the terminal 

bromide ligands. One can define a plane passing through the 

two terminal bromine atoms parallel to the central plane and 

the distances from the metal atom to these two planes are simi­

lar to the d" and d' defined by Cotton and Ucko. The central 
O 

plane is 1.36A from the tantalum atom and the terminal bromine 
O 

plane is 1.32A from the tantalum atom where the values listed 

are averages for the two ends of the dimer. The d'/d" value 

is 1.03 as calculated from the above figures, a result quite 

comparable to the value of 0.98 found in Cs2Mo2Clg (78) where 

the formal metal-metal bond order is three. 

The second and third parameters invoked are angular devia­

tions resulting from axial distortions. The bridging ligand-

metal-bridging ligand angle (a') is of course an undistorted 

90.0° in the idealized bioctahedron, but as the dimeric species 

is axially distorted this angle will increase if the metal 

atoms approach more closely and decrease if elongation occurs. 

The quantity 90.0®-a' defines a parameter which should parallel 

the value of d'/d"; it should increase when d'/d" increases and 

decrease when d'/d" decreases. Another angular moduli can be 

based on the metal-bridging ligand-metal angle, .3, which is 

70.5° in the idealized case. The quantity 3-70.5° should in­

crease as d'/d" increases and thus one expects the same type of 

algebraic dependency on the metal-metal interaction for this 
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parameter as for d'/d" and 90.0®-a'. It should be stressed 

that the tantalum dimer is not a symmetry species and 

hence the above moduli are not rigorously applicable, but an 

examination of the various parameters as modified for €2^ sym­

metry is a valid and worthwhile exercise. 

The 3-70.5° criterion clearly indicates metal-metal 

attractive forces are present as all three values are negative: 

Ta(l)-Br(5)-Ta(2), -8.2°; Ta(l)-Br(6)-Ta(2), -8.9°; Ta(l)-S(l)-

Ta(2),-1.5°. Although the presence of one bridging tetrahydro-
O 

thiophene with metal-sulfur bonds 0.24A shorter than the metal-

bridging bromine bonds is a very large perturbation from 

symmetry and should not be overlooked, the magnitudes of the 

3-70.5° moduli presented still offer cogent insight into the 

force existing between the two metal atoms in Ta2Br^(SC^Hg)^. 

The average value of 3-70.5° is -6.2°, again similar to the 

corresponding value for Cs2Mo2Clg [78) of -6.0°. 

The variance in 90.0°-a' is surprisingly large as a result 

of the tetrahydrothiophene occupying a unique position among 

the three bridging ligands. The four Br^^-Ta-S^^ angles aver­

age 101.0° while the average of the two Br^y-Ta-Br^p angles is 

only 77.6° - a difference of 23,4° among angles which are equal 

in the case regardless of axial distortions. Accordingly, 

90.0°-3 is -11.0° for the four angles involving the bridging 

sulfur atom and +12.4° for the two angles involving only bridg­

ing bromine atoms. Such a wide variance prohibits interpreta­

tion based on axial contraction or elongation alone, although 
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the average of -3.2* for 90.0®-3 is again indicative of metal-

metal bonding and even compares favorably with the Cs^MOgClg 

value of -4.2°. 

The metal-bromine bond lengths vary as expected in that 
O 

the average tantalum-bromine bridging distance is 0.12A longer 

than the bonds to terminal bromines. This result is typical 

for species containing both bridging and terminal halogen 
O 

atoms, as for example in NbgCl^g where Nb-Cl^^ = 2.56A and 
O O 

NbCl^ = 2.25A or 2.30A depending on whether the terminal chlo­

rine is cis or trans to a bridging chlorine (79). 

The covalent radius of bromine has been reported to be 
0 

1.14A (80), so assuming this value to be applicable to the 

tantalum-terminal bromine distance the covalent radius of tan-
O 

talum in the dimer is 1.38A by difference. A covalent radius 
O O 

of 1.02A for sulfur then leads to a sum of 2.40A for the metal-
O 

sulfur covalent radii. This value is 0.22A less than the ob-
O 0 

served Ta-S^ distance of 2.62A, but agrees to within O.OIA 

with the Ta-S^p bond distance. This situation contrasts mark­

edly with the halogen behavior where bridging bonds were con­

siderably lengthened relative to terminal bonds. 

Steric factors may be employed to account for the large 

discrepancy between Ta-S^ and Ta-Sj^^ bond lengths. The four 

bromine atoms bound to each tantalum form a least-squares 
O 

plane to within O.OIA, but the metal-metal attraction pulls 

the tantalum atoms toward one another and out of their respec-
O O 

tive planes by 0.22A and 0.21A for Ta(l) and Ta(2), respec­
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tively. The fact that nonbonded interactions are important in 

determining the tantalum-terminal sulfur distance is substan­

tiated by noticing that the terminal sulfur atoms are hindered 

from closer approach to the tantalum atoms by repulsion of the 
O 

four cis-bromine atoms in the plane which is 2.40A (average) 

away from the sulfur atom. The average nonbonded contact dis­

tance between the terminal sulfur and the four bromine atoms 
O 

is 3.51A, which is already less than the sum of the van der 
O 

Waals radii, 3.68A. The van der Waals radius of bromine has 
O 

been reported in the range of 1.8-2.OA (80), but for our pur-
0 O 

pose the value of 1.85A will be used for bromine and 1.83A 

for sulfur (81) with the understanding that these numbers do 

not set absolute limits but rather guide one in surveying non-

bonded distances. Some deviations from van der Waals radii 

constraints are expected in view of the dative bonding of un­

shared electron pairs of these ligands to the same metal atom, 

but it remains clear that steric repulsion makes it impossible 

for the terminal sulfur atoms to maintain a normal covalent 

bond distance to the displaced tantalum atom. Perhaps it is 
0 

only coincidental that the terminal sulfur atoms are 2.40A from 

the bromine plane and the tantalum-bridging sulfur distance is 
0 

an almost identical 2.39A. 

The nonbonded distances within the molecular unit are 

generally in agreement with accepted values of van der Waals 

radii with one outstanding exception: the two bromines in 
O 

bridging positions are within 3.30A of each other. The 
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successful application of steric arguments in rationalizing 

the sulfur-metal bond lengths leads one to ponder the possi­

bility of the bridging tetrahydrothiophene ligand repulsing 

the bridging halogens and thus causing the abnormally short 
O 

bromine-bromine distance. The average distance of 3.88A sep­

arating the bridging sulfur from the bridging bromines com­

pletely invalidates this hypothesis. All of the remaining 
O 0 

eight cis-bromine-sulfur distances range from 3.37A to 3.62A 

so the bridging bromine-bridging sulfur separations are in 
O O 

fact 0.39A longer than the 3.49A average of the other compar­

able sulfur-bromine distances. 

To satisfactorily explain this structural anomaly one 

must delve into the molecular orbital description of the dimer. 

The following analysis will involve a qualitative progression 

from an octahedral monomer to a confacial bioctahedral 

dimer and finally a descent to the effective symmetry of 

The molecular orbital scheme involving only a-bonding to 

six equivalent ligands in an octahedral complex is frequently 

presented in inorganic texts. The diagram reproduced in Figure 

7 is taken from Cotton's "Chemical Applications of Group 

Theory" (82). The basic points to be noted are listed below. 

The formation of six a-bonding orbitals which will be filled 

by twelve electrons donated from the ligands results from the 

interaction of metal orbitals of symmetry ^jg' ̂ lu ®g *ith 

linear combinations of ligand a-orbitals of the same symmetry 
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representations. The two sets of molecular orbitals consist­

ing largely of metal d-orbitals are split in energy since the 

t2g metal orbitals are effectively nonbonding due to the ab­

sence of a tgg representation among the ligand sigma symmetry 

combinations while the eg representation, consisting largely 

of d ? and do ?, is raised in energy as a cr-ant ib ending 
x^-y^ 

orbital set. The number of electrons present in these orbitals 

is determined by the electronic configuration of the oxidized 

metal in the complex. For transition metals these orbitals 

will be partially filled and therefore these energy levels are 

the sites of chemical interest: the highest occupied molecular 

orbital and the lowest unoccupied molecular orbital. A hybrid 

3 2 
orbital description involving sp d orbital hybridization is 

similar to the molecular orbital scheme in that s, p^, p^, p^, 

d^2 a^nd d^2 y2 ̂ etal orbitals are utilized in a-bonding to the 

ligands. The hybridization approach leaves the d , d and 
Ay Y L 

^xz ofbitals vacant except for nonbonding electrons remaining 

on the metal atom; the molecular orbital treatment produced 

similar results by forming high energy cr-antibonding orbitals 

which were energetically inaccessible with all of the metal 

valence orbitals except for these same three d-orbitals. The 

possible ir-interaction between ligands with unshared electron 

pairs and the metal tgg orbitals is symmetry allowed, but one 

can neglect such backbonding as at most a small perturbation 

of the a-bonding structure. 

Having established the a-bonding scheme in an octahedral 
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complex one can progress to a molecular orbital description of 

the bonding in a confacial bioctahedron produced when two 

octahedral complexes merge along a trigonal face. The 

symmetry axes are defined in Figure 8 by X, Y, and Z, while 

*i' ̂ i' ^i fefcr to the axis of quantization for the metal 

orbitals on metal atom M^. Although the reduction in symmetry 

from 0^ to eliminates many of the restrictions which guide 

one in an analysis of bonding interactions, it seems logical 

that the a-bonding structure will basically remain intact. 

The availability of two electron pairs for dative bonding from 

the bridging ligand to the two separate metal atoms allows the 

complex to retain a total of twelve a-bonding orbitals during 

the imaginary convergence of six terminal ligands into three 

bridging ligands. These orbitals will be filled exclusively 

with ligand donated electrons just as in the octahedral mono­

mer case. The symmetry representations of the twelve ligand 

sigma orbitals are Za^+Zag+Ze'+Ze" and this corresponds in a 

one-to-one fashion with the representations of the s, p , p , A y 

p , d 2 and do 9 orbitals on the two metal centers. Hence 
z z X -y 
the formation of twelve a-bonding orbitals and twelve a-anti-

bonding orbitals is symmetry allowed. Based on overlap con­

siderations apparent in the octahedral instance the a-bonding 

is formulated without inclusion of the d , d , and d metal X/ AZ yz 

orbitals even though symmetry requirements no longer rigorously 

exclude these orbitals from entering into ligand a-interactions. 

Figure 9 illustrates the symmetry representations appro-
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priate for combining the electron-containing orbitals of two 

octahedral monomers along a trigonal face. As in the octa­

hedral case the a-bonding orbitals are low in energy and filled 

with electrons and the corresponding antibonding levels are 

quite high in energy; these high energy orbitals are vacant 

and they have been omitted from the diagram for purposes of 

clarity. This leaves the partially filled metal t2g orbitals 

(in 0^ symmetry) to interact in the center of the diagram to 

form a total of six molecular orbitals. The overlap between 

these metal d-orbitals will produce a sigma bonding molecular 

orbital of aj symmetry with an a^ antibonding mate and a 

degenerate set of e' TT-bonding orbitals accompanied by an e" 

antibonding set. The linear combinations of metal d-orbitals 

corresponding to these representations are listed below. 

*i{;:<dxy(l)+dx2(l)+d_,(l)+d_,(2)+d,,(2)+d_,(2)) } yz xy xz yz 

'«* rl 
^2 

r < 

;i2(:4xy(l)-dxz(l)-dyz(l)+24xy(2)-dxz(2)-ayz(2)) 

if(dx,(l)-dy,(l)+dx,(2).dy,(2)) 

e"V 

/^(2dxy(l)-AXZ(l)-4yz(l)-24xy(2)+4x,(2)+dy,(2)) 

7;<4x,(l)-dy,(l)-d„(2)+dy,(2)) 

Cli) 

(12) 

(13) 

(14) 

(15) 

(16)  
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For our purposes the only orbital lobes of importance 

will be those capable of overlapping with similar orbitals on 

the partner metal atom and this immediately limits us to the 

d , d^_, and d„, lobes directed between the bridging ligands xy xz yz 

towards companion lobes on the adjacent metal atom. The re­

maining three lobes of each of these d-orbitals are oriented 

away from the adjacent metal octahedron and no significant 

overlap is possible. Only the orbital lobes of importance in 

overlap considerations are shown in Figure 10 which illustrates 

the resultant metal-metal molecular orbitals. The energy 

levels can be ordered in a qualitative manner by examining 

overlap and nodal characteristics of the molecular orbitals. 

The a| representation has no nodes and maximum constructive 

overlap and it is doubtless the lowest energy orbital among 

these six. One node is present in each of the e' orbitals but 

the overlap is constructive and these will be lowered in energy 

relative to the initial uncombined orbital energies to form 

TT-bonding molecular orbitals. Similar reasoning involving 

destructive overlap places the a^'* representation highest in 

energy and the e"* is clearly antibonding but lower than the 

II * _ _ 
a2 energy level. 

In species isoelectronic with K^WgClg there are six metal 

valence electrons which fill the a and two TT bonding orbitals 

to forge a metal-metal bond of order three. The strength of 

the interaction varies widely from cases such as K2W2Clg (83) 
O 

where the bonding is quite robust (d(W-W)=2.41A) to cases where 
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Figure 10. Metal-metal molecular orbital overlap diagram for 
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there is no evidence of constructive overlap such as in 

CSgCrgClg which also has six available electrons but behaves 
7 

magnetically like two independent d chromium atoms. The 
O 

Cr-Cr distance of 3.12A (84) and other bonding criteria such 

as d'/d" = 1.23 are all consistent with the absence of an 

attractive metal-metal force in this dimer. 

The remaining step in deriving a suitable molecular orbit­

al description of TagBr^fSC^Hgjg is to descend to C^^ symmetry 

and place four metal valence electrons in the appropriate 

orbitals. Again we will assume that the a-bonding framework 

remains basically intact as the three tetrahydrothiophene 

ligands alter the symmetry of the molecule to Cg^. The region 

of interest consists of the a and ir metal-metal molecular 

orbitals where symmetry constrained the two w-orbitals to 

be energetically equivalent due to the axial three-fold sym­

metry. The demise of the C^ axis upon substitution of three 

equivalent ligands with three dissimilar ligands as compared 

to the remaining six removed the degeneracy restriction which 

applied to the ir-orbitals of a dimer. If one had placed 

four electrons in the molecular orbitals two electrons 

would have been paired in the a-orbital and the next two 

electrons would have occupied the degenerate ir-orbitals with 

parallel spins in accord with Hund's rules. The diamagnetic 

behavior of TagBr^fSC^Hg)^ must be a consequence of splitting 

the e' energy levels substantially in the lower symmetry so 

that spin-pairing occurs in the lower energy "rr-orbital while 
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the remaining ir-orbital formally remains as a bonding molec­

ular orbital but is devoid of electrons. The crux of this 

entire procedure is to establish which -rr-orbital is lowered in 

energy, and therefore occupied, and which is unoccupied. It 

is here that the initial question pertaining to the disposi­

tion of the bridging atoms comes into focus. 

Figure 11 illustrates the coordinate system appropri­

ate for Ta^Br^CSC^Hg)^, but it is important to note that the 

individual metal axes remain unchanged from those utilized in 

the Djjj analysis. At this stage the d^y, d^^, and d^^ orbit-

als of both metal atoms will be considered exclusively based 

on the premise that these orbitals are sufficiently well iso­

lated from other orbitals by energy differences to justify 

such an insular treatment. The linear combinations listed in 

Equations 11 to 16 for symmetry are still valid molecular 

orbitals, but the descent in symmetry converts them to the 

following representations in the group; 

a^(ll) a^ 

a2*(12) -> bg* 

e'(13) ->• a^ 

e' (14) b^ 

e"*(15) bg* 

e"*(16) ag* 

Qualitative overlap considerations certainly suggest that 
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Figure 11. C2v symmetry coordinates for a confacial biocta-
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the molecular orbital derived from the aj orbital of the 

case will remain as the lowest energy metal-metal bonding 

orbital and two electrons are therefore assigned to this a-

bond. The correct energy ordering for the a^ and b^ ir-orbitals 

descended from the e' degenerate representation is not subject 

to such a simple a priori analysis. Recalling that the a^ and 

bj^ ir-orbitals were degenerate in the case one can only 

examine the experimentally determined structure in search of 

distortions which are consistent with lower energy for one of 

the two TT-orbitals and suggests electron occupancy of that 

level. An inspection of the a^^ n-orbital reveals that the 

region of greatest overlap for this molecular orbital lies 

between the two bridging bromine atoms with minor overlap 

present in the two spaces between the bridging sulfur and 

bridging bromine atoms. A similar investigation of the b^ 

symmetry orbital shows no contribution from the two d^y-orbit-

als between the bridging bromines, but rather the entire 

strength of this ir-bond results from overlap of d^^. and d^^ 

orbitals from the two metal atoms in the vacancies between the 

sulfur atom and the two bromines. Considering the large S^^-

Ta-Bry^ angles which average 101.0° compared to the Bry^-Ta-

Brfor angle average of 77.6® it seems that the bj^ n-orbital 

effectively fills the voids between the sulfur and the bromines 

with electron density which repels the bridging ligands. Al­

though these two electrons are in a ir-bonding orbital, it is 

an orbital which lies entirely outside the confines of the two 
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Br^y-Ta-Br^y triangle boundaries. These electrons are stereo-

chemically active in the same sense that the unshared pair of 

electrons in ammonia forces an equilibrium pyramidal structure 

at the expense of a possible planar configuration. 

A view of the bridging atom triangle along the metal-

metal axis reinforces the ir-bonding hypothesis. Even though 

the van der Waals radius of sulfur is less than that of bro-
O O 

mine the sulfur-bromine distances are 0.60A and 0.56A longer 
O 

than the bromine-bromine separation of 3.30A. The lower limit 
O 

reported for bromine's nonbonded contact radius is 1.8A (80) 

which infers that any two nonbonded bromines separated by less 
o o 

than 3.6A would strongly repulse one another. The 3.30A dis­

tance here is therefore energetically unfavorable even allowing 

for some electron density alterations in the bridging bromide 

ions due to the dative bonding of two electron pairs. An 

explanation of the abnormal proximity of these two atoms must 

embrace some postulate that will dictate closure of the two 

bromines. There is no reason to suspect metal-ligand a-bonding 

factors favor this angular distortion and the metal-metal cr-

bond is axially symmetric and therefore only able to distort 

the dimer by contraction or elongation along the axis. The 

only electronic factor remaining, having earlier justified 

neglecting ir-bonding from the ligands and steric hindrance 

arguments, is the metal-metal TT-interaction. If one imagines 

an equilateral triangle formed by the three bridging atoms, 

two possible angular distortions immediately come to mind 
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which are compatible with retention of Cgy symmetry. 

1. The two bromine atoms swing outward towards the sul­

fur atom. This allows more space for the d metal orbitals 
xy 

of the a^ TT-bonding orbital, but at the same time the domains 

of the d^2 and orbitals are infringed upon and these con­

tributions, although less than those from d overlap, are xy 

important in influencing the energy of the resultant molecular 

orbital. One concludes that this distortion would not sub­

stantially lower the a^ energy level because of opposite 

effects on different lobes of this molecular orbital. 

2. The two bromine atoms swing inward away from the 

sulfur atom and towards one another. The b^ TT-orbital has no 

density located between the two bromine atoms and hence no 

increase in the b^ energy level should occur with this distor­

tion. In fact the energy of the b^^ n-orbital should decrease 

as a result of the increased space available between the sul­

fur and bridging bromines which corresponds to the locations 

of maximum overlap for the d^^ and d^^ metal orbitals which 

constitute the molecular orbital in question. 

This second distortion accords well with the observed 

structure as exemplified by the bridging atom triangle in 

Figure 12. Whether the structure distorts to lower the energy 

of the bj TT-orbital or whether the presence of two electrons 

in this molecular orbital causes the distortion due to elec­

tronic repulsion is a mute question. The point to be stressed 
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BRIDGING ATOM TRIANGLE ILLUSTRATING DISTANCES 
AND ANGLES 

3 .30 A Br  (5)  
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Figure 12. Bridging atom triangle parameters for Ta2Br6 
(SC^Hg)^ and relative positions of important 
d-orbital lobes 
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is that the bonding description presented successfully accounts 

for the anomalous bridging bromine locations under examination 

and this hopefully justifies the preceding excursion which 

developed these concepts in detail. 
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PART II. SYNTHESIS AND CHARACTERIZATION 

OF [(CH3CH2CH2)4N]2[W2Brg] 
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REVIEW OF RELATED WORK 

The descriptive chemistry of tungsten is extremely com­

plex. The selection of background material from the litera­

ture must be adequate for the reader to place the synthetic 

route and resulting product in perspective, and yet a compre­

hensive review is both impractical and unnecessary. The in­

tended bases for the three divisions which follow are to 

document the propensity with which tungsten forms homonuclear 

metal bonds via a cursory overview of tungsten chemistry, then 

to examine the group VI nonahalodimetallates in greater detail 

from both the preparative and structural viewpoints, and fin­

ally to discuss the role of carbonyl containing reactants of 

group VI in syntheses of metal-metal bonded compounds. 

A Brief Overview of the Descriptive Chemistry of Tungsten 

The descriptive chemistry of tungsten is characterized by 

a wide variety of oxidation states spanning the range from 2-

to 6+, and the chemistry is further complicated by multiple 

stereochemical possibilities for coordination numbers between 

four and eight, inclusive. The chemistries of tungsten and 

molybdenum display similar trends, and analogies can be profit­

able in some instances. The remaining group VI metal, chromium, 

is only similar to tungsten in low oxidation state organometal-

lic compounds with ir-ligands. As an example of the contrasting 

chemistries, Cr(III) is a particularly stable oxidation state 

in aqueous solutions and numerous studies have been made of 
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cationic complexes of Cr(III), but tungsten 3+ or 4+ can be 

obtained in aqueous systems only as air sensitive species 

which are not cationic. The higher oxidation states of tung­

sten are much more stable to reduction than the corresponding 

oxidation states of chromium, and both terminal and bridging 

2 _ 
oxides of tungstenCV) or (VI) are very stable, while CrO^ is 

a powerful oxidant. Molybdenum and tungsten generally favor 

the 4+, 5+, and 6+ oxidation states except for polynuclear or 

organometallic species. The anhydrous tungsten chlorides exem­

plify the trend towards condensation to form clusters which 

accompanies lower oxidation states; WCl^ (85), WClg (86), WCl^ 

(87), WClg (88) and WClg (87) have all been isolated, but both 

WClj and WClg contain a hexanuclear cluster unit consisting of 

an octahedron of six metal-metal bonded tungsten atoms. 

The hexanuclear cluster unit has not been as ex­

tensively characterized as the analogous molybdenum system, 

but it definitely illustrates the metal-metal bonding capa­

bility of low valent tungsten halides. All three tungsten 

dihalides (CI, Br, and I) are best formulated as [W6X3]^2^4/2 

(87). The cluster has eight halogens above the eight faces of 

the metal octahedron which are triply bridging since they are 

each bound to three metal atoms. The six terminal positions 

are occupied by halide ions in the anhydrous halide, some of 

which bridge to other clusters, and the terminal positions can 

be easily substituted by various donors, neutral or anionic. 

The bonding among the metal atoms in octahedra involves 



www.manaraa.com

110 

twenty-four metal valence electrons which are not utilized in 

metal-ligand o-bonds. Twelve metal-metal bonding molecular 

orbitals have been derived from the d-orbitals available on 

the six metal atoms and hence the bonding orbitals are nicely 

filled by the twenty-four electrons (45). A bond order of one 

results for each of the twelve adjacent metal-metal interac­

tions. An x-ray structure of W^Br^^ revealed the presence of 

7 -
bridging Br^ " groups such that the formulation (W^Brg)Br^ 

(Br^)2/2 best represented the central W^Brg^* unit (89). The 
O 

W-W distance of 2.64A was consistent with a strong bond based 

on a comparison with tungsten metal where the distance of 
O 

closest approach is 2.74A. 

At this time one of the inexplicable differences in the 

chemistry of tungsten and molybdenum will be mentioned. While 

MOgCOgCCHg)^ (90) and many derivatives have been thoroughly 

investigated and shown to contain a metal-metal quadruple bond, 

the corresponding tungsten series remains an enigma (91). 

Even though a wide variety of reaction conditions has been 

employed ranging from those similar to the MOgfOgCCHg)^ pre­

parative routes to far different synthetic approaches, no 

successful isolation of quadruply bonded tungsten dimers has 

been reported. 

Group VI M2Xg^" Anions 

Tungsten-tungsten metal bonds are found in the dimeric 

anions WgClg " and WgBrg " in addition to the hexanuclear metal 

halides discussed above. Olsson reported the preparation of 
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KgWgClg in 1914 by the reduction of tungstic acid in concen­

trated hydrochloric acid with elemental tin (92) . In 1932 

Young prepared the corresponding nonabromoditungstate anion as 

KgWgBrg (93) by a procedure similar to that of Olsson. Tung­

stic acid was reduced with tin in concentrated hydrobromic acid 

to produce analytically pure K2W2Brg in the form of brown 

hexagonal plate-like crystals. 

Extreme sensitivity to the exact reduction conditions 

caused large fluctuations in the yield of when Olsson's 

synthetic procedure was employed, and hence several modifica­

tions of his general scheme have been published as improvements 

in the synthesis of the dimeric anion. Laudise and Young (94) 

formed complex chlorides of tungsten by dissolving tungstic 

acid in a boiling solution of potassium carbonate, and then 

added the tungstate solution to concentrated HCl while HCl gas 

was continuously passed through the mixture. A series of tem­

perature controlled steps followed as the solution was reduced 

with mossy tin to form either K^WgClg or KgW^Cl^^ depending on 

the amount of KCl added during the reduction. Yields of 50% 

were reported by the authors, but later investigators reported 

yields of only 5% via this route (95) . It should also be 

noted that a thorough investigation of KgW^Cl^^ revealed a mix­

ture of K2WClg(0H) and K^WgClg which accounted for the observed 

properties (96) , so the existence of a trimeric tungsten halide 

seems highly unlikely. 

Heintz published an aqueous preparation of K2W2Clg as a 
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necessary intermediate for the synthesis of cyanotungstates 

(97), and he noted that the difficulties in preparing cyano­

tungstates centered around the nonachloroditungstate anion. 

Wentworth and co-workers modified Heintz' procedure by lower­

ing the reaction temperature, increasing the acidity, and 

employing tin powder rather than tin foil to obtain yields of 

70% prior to recrystallization (95). All of the above prepar­

ative routes utilize tin reduction of tungsten(VI) chloro 

species in aqueous solution to synthesize WgClg^ salts, and 

only technical details differ among the various procedures. 

Following the initial report of KjW2Brg in 1932 (93) 

there was no mention of this compound until 1968 when Hayden 

and Wentworth prepared WgBrg^" via halide exchange (98). 

Attempts to duplicate Young's procedure resulted in insignifi­

cant yields of the desired tungsten dimer, and results of a 

previous radiochloride exchange study of WgClg^ in acid solu­

tion (99) suggested that all nine chloride ligands were kinet-

ically equivalent and sufficiently labile to undergo substitu­

tion. Indeed the dark green K^WgClg dissolved in concentrated 

HBr and complete exchange occurred within twenty-four hours if 

a moderate flow of HBr gas was maintained during the reaction 

period. Addition of rubidium bromide precipitated Rb^WgEfg" 

Lower yields of the potassium salt were obtained due to the 

higher solubility of K^WgBrg. The brown hexagonal plates of 

KgWgBrg dissolved in deoxygenated water to produce brown solu­

tions when concentrated which appeared orange to pink upon 
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dilution. The aqueous solutions quickly decomposed in the 

presence of air. A mechanism which could account for both 

intramolecular halide kinetic equivalence and free halide 

2 _ 
exchange was presented based on the known reaction of WgClg 

with pyridine to form the dimeric WgCl^Cpy)^ with a total of 

ten ligands present (95). Addition of a halide ion could 

possibly proceed with the rupture of one of the bridge bonds 

to reversibly form WgCl^Q^ as an intermediate which adopts 

the edge-shared bioctahedral structure. In this manner radio-

chloride or bromide could be introduced into both terminal and 

bridging positions of the confacial bioctahedron. No further 

preparations or characterizations of W2Brg^' have been pub­

lished to date. 

The x-ray structure of potassium nonachloroditungstate 

(3-) disclosed a surprisingly short tungsten-tungsten distance 
O 

of 2.41A (83). The metal-metal separation was particularly 

interesting when contrasted with Cs2Cr2Clg where the two chro-
O 

mium atoms were 3.12A apart (84). Both anions were similar in 

that they both conformed to the confacial bioctahedral struc­

ture, but drastic differences in the axial distortions due to 

metal-metal forces were evident. The chromium atoms were dis­

placed away from each other along the three-fold axis while 

the tungsten atoms showed the opposite behavior and were 

strongly attracted towards one another. 

Crystal structures of CSjCr2Clg, Cs^MogClg and Cs2Mo2Brg 

added detailed structural information to the data bank of 
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group VI nonahalodimetallates (78). Both Cs2Cr2Clg and 

CSgCrgBrg display a complete lack of any attractive metal-

metal interaction. The criteria discussed in the introduction 

3 -
discount any possible metal-metal bonding in CrgClg and 

<y 0 0 

CrgBrg The metal-metal separations of 3.12A and 3.32A in 

the chloro and bromo anions, respectively, are quite long rela-
O 

tive to the elemental metal distance of 2.50A. It then fol­

lows that the nonahalodichromate distortions are consistent 

with the presence of metal-metal repulsion, notably d'/d" = 

1.23 and 1.28, 90.0°-a' = 4.2° and 7.0% and 3-70.5° = 5.9* 

and 9.5° for Cs2Cr2Clg and Cs2Cr2Brg, respectively. Further­

more, the magnetic and spectroscopic properties of these dimers 
r 

are those of two independent d chromium atoms (100) : ^eff 

near 3.8 BM at 300° for each of the chromium atoms in the 

dimer, and the electronic transitions observed experimentally 

can be assigned independently to each chromium chromophore 

without invoking metal-metal overlap. The reaction of pyridine 

with Cr^Clg^" cleaves the halide bridges to form monomeric 

CrClgCpy)^ in a manner consistent with the absence of metal-

metal bonding. 

Nonachloroditungstate (3-) lies at the opposite extreme in 

the realm of dimeric metal interactions as evidenced by appli­

cation of the same criteria. The metal-metal separation of 

2.41A is quite short, and d'/d" = 0.90, 90.0°-a' = -8° and 

3-70.5° = -12.5° are all consistent with metal-metal bonding 

causing the two metal atoms to contract along the three-fold 
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axis. The tungsten dimer has only a small temperature inde­

pendent paramagnetic contribution which confirms spin-pairing 

3 of the two d configurations such as would occur due to the 

formation of metal-metal bonding molecular orbitals. The 

reaction of aromatic amines, including pyridine, with W^Clg^ 

produces dimeric W2Clg(py)^ compounds (9 5) which retain metal-

metal bonding as exemplified by the tungsten-tungsten distance 
O 

of 2.74A in WgCl^Cpy)^ (101). The edge-shared dimeric struc­

ture of W2Cl^(py)^ is unusual in that two chlorine atoms 

occupy the bridging positions as one would expect, but the two 

tungsten atoms are different in that one has pyridine ligands 

trans to both bridging chlorines and chlorine atoms occupy the 

two remaining octahedral sites of this tungsten while the other 

metal has chlorine atoms trans to the bridges with pyridine in 

the remaining positions. Regardless of the exact disposition 

of the ligands, the observed retention of the dinuclear unit 

during substitution is characteristic of metal-metal bonded 

species and the contrast between chromium and tungsten con-

facial bioctahedral anions is reaffirmed. 

The above comparison of chromium and tungsten dimers is a 

classic example of the fruitful application of metal-metal 

bonding distortional moduli to well characterized compounds. 
? _ 

Based on the above data one might suppose that Mo2Xg anions 

would exhibit properties chara. ter'\stic of metal-metal bonds of 

intermediate strength. Indeed the dimeric molybdenum anions 

clearly display structural and magnetic properties indicative 
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of metal-metal bonding, but the extent of the bonding is less 

than in the tungsten case as judged by the magnitudes of vari-
O 

DUS moduli. The Mo-Mo distance in Cs^MOgClg is 2.66A which is 
O 

0.25A longer than the corresponding metal-metal distance in 
O 

KgWgClg and an even longer 2.82A separates molybdenum atoms in 

Cs2Mo2Brg (78) . The confacial bioctahedral moduli introduced 

previously indicate the presence of metal-metal bonding: 

d'/d" = 0.98 and 0.97, 90.0°-a' = -4.2* and -3.9°, and g-70.5° 

= -6.0° and -5.6° for Cs2M02Clg and CSjMo2Brg, respectively. 

This pair of chloro and bromo anions are an excellent example 

of how parameters other than metal-metal distance alone are 

required to correctly assess the extent of the metal-metal 
? _ 

interaction. Although the MOgBrg " anion has the molybdenum 
O 

atoms 0.16A further apart than the chloride analog, the values 

of the generalized moduli (d'/d", 90.0°-a', and 3-70.5°) are 

all nearly the same for the two species which suggests that 

the deviation in metal-metal bond length results from con­

straints due to the presence of different halide ligands and 

not from a drastic change in the nature of the metal-metal 

interaction. No structural data has been published for the 

WgBrg^ anion but similar results would be predicted, i.e. one 

would anticipate the generalized moduli to be nearly equivalent 

to those of KgWgClg with the metal-metal distance increased by 
O 

perhaps 0.16A or so. The magnetic properties of Cs2Mo2Xg (X = 

CI or Br) are consistent with the bonding description presented 

thus far. The chloride exhibits only temperature independent 
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paramagnetism consistent with electron spin-pairing in the 

ground state with no paramagnetic excited states accessible 

at room temperature. The bromide displays weak paramagnetism 

which is temperature dependent and the data suggests a spin-

paired ground state with some low-lying paramagnetic excited 

states thermally populated at room temperature (102). 

Another molybdenum dimer of importance which has been 

characterized by x-ray diffraction is Rb2Mo2Clg (103). Al-
7 -

though the Mo2Clg " dimer is formed from Mo2(02CCH2)^ treated 

with hydrochloric acid at 60°C followed by addition of rubidi­

um chloride, the product is not structurally similar to the 

parent compound but rather adopts a structure based on the 

confacial bioctahedral conformation of Cs2Mo2Clg. Several 

aspects of the structure of this unique dimer are relevant to 
? _ 

this review. Formation of the MOgClg ' entity can be visual-

2 _ 
ized by removal of a bridging chlorine atom from Mo2Clg and 

the molecular structure corresponds exactly to the resultant 

dibridged species. The octachlorodimolybdate (3-) retains the 

symmetry characteristic of confacial bioctahedral struc­

tures in the solid state due to the statistical absence of 1/3 

of the bridging chlorine ligands. The average oxidation state 

of the molybdenum atoms in this dimer is 2.5, midway between 
7 _ 

the 3+ valence of Mo2Xg ' dimers and the 2+ valence of quad-

ruply bonded dimolybdenum tetracarboxylate derivatives. The 
O O 

Mo-Mo distance of 2.38A is also between the values of 2.66A 

for Mo2Clg^ and 2.09A for Mo2(0CCHj)^ (104). The structural 
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importance of removal of one of the bridging chlorine atoms 

3 ~ 
from MogClg should not be underestimated since a consider­

able amount of steric repulsion and angular deformation energy 

accompanies the bridging ligand. The conclusions derived from 

applying confacial bioctahedral moduli to MOgClg " must be con­

sidered cautiously in order to avoid invalid comparisons. 

Nonetheless, the values of such moduli make it clear that the 

octachlorodimolybdate (3-) is more distorted due to metal-metal 

contraction than any of the true dimers which have been 

structurally characterized to date: d'/d" = 0.89, 90. 0®-ot' = 

-9.2°, and 3-70.5® = -13.7°. The greater distortions present 

are presumably due to decreased opposition to contraction as a 

result of the absence of one bridging chlorine per dimer. 

One-electron oxidation of W^Clg^" has been accomplished 

with elemental halogen oxidants in dichloromethane (105). The 

green solution of nonachloroditungstate (3-) underwent electron 

transfer with X2 (X = CI, Br, or I) to form the violet 

without incorporation of the halogen oxidant into the molecular 

unit. The tetrabutylammonium salt which was isolated was char­

acterized by a conductivity measurement in acetonitrile, elec­

tronic spectrum, far-infrared spectrum and a magnetic suscepti­

bility consistent with one unpaired electron per dimer (Vgff = 

1.87 BM). Although the authors were certain of the dimeric 

nature of the product, retention of the confacial bioctahedral 

structure was not confirmed and other possible structures were 

mentioned. 
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Group VI Metal Carbonyl Halide Reactants 

3- 2-
Wentworth and co-workers have prepared Mo2Clg ' from 

the redox reaction of MoCl^^ with Mo(C0)^Cl2 in dichloro-

methane (106) . The synthetic approach employed was based on 

the concept of oxidative displacement of carbon monoxide from 

MoCCOj^Clg" with concomitant bridge formation with the oxidant, 

either MoCl^^" or MoCl^ . Loss of the fourth carbon monoxide 

ligand was expected to proceed easily due to the known labil­

ity of CO bound to metals in slightly higher oxidation states, 
? _ ? -

and hence the proposed Cl^MoCl^MoCl^(CO) ' intermediate 

would form the desired nonachlorodimolybdate. Although no 

attempt was made to confirm any mechanistic possibilities, the 

authors did successfully isolate the triply-bridged chloride 

anions according to the stoichiometry shown in Equations 17 and 

18. Reaction 17 occurs over a thirty hour time period to pro-

MoClg^" + Mo(CO)4Cl3" -> MOgClgS- + 4C0 (17) 

MoClg" + Mo(C0)4Cl3" ^ MOgClgZ- + 4C0 (18) 

duce a 50% yield while reaction 18 produced almost quantitative 

yields in twenty-four hours. The anions were isolated as 

quaternary ammonium salts. The temperature dependence of the 

magnetic moment of [(CH2CH2CH2)4N]2Mo2Clg was consistent with 

the thermal population of states with S = 1 and S = 0 at room 

temperature with diamagnetic behavior observed below 100°K. 

The magnetic susceptibility of [(n-C^Hg)^N]2Mo2Clg below 100°K 

indicated a ground state with one unpaired electron per dimer 
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with a magnetic moment near 1.6 BM. Thermal population of 

states with S = 1/2 and S = 3/2 occurs as the temperature in-

? -
creases toward 300°K. The MOgClg " anion was easily reduced 

to the 3- dimer by acetonitrile or tin metal. 

Further success in rational preparative routes to metal-

metal bonded molybdenum dimers based on the concept of oxida­

tive displacement of carbon monoxide was reported in 1974. 

Starting with Mo(CO)gX" and an appropriate metal halide, salts 

of Mo2Clg ' and MOgBrg ' were prepared in high yields accord­

ing to Equations 19 and 20. 

6M0CI5 + 4Mo(C0)gCl" + llCl" SMOgClg^- + 20 CO (19) 

SMoBr^ + MoCCOjgBr" + 5Br' 2Mo2Brg^" + SCO (20) 

A brief survey of the group VI halocarbonyl anions is 

appropriate at this time. Particularly for the chloro species 

it will become evident that it is much easier to prepare 

Mo(CO)^Cl" salts than Mo(CO)^Clj salts, and this fact makes 

reaction 19 preferable to reaction 17 for the convenient 

preparation of Mo2Clg 

In the first report of the reaction of a halide salt with 

molybdenum hexacarbonyl the product was incorrectly formulated 

as a TT-complex with the N-methylpyridinium cation attached to 

a molybdenum tricarbonyl fragment (107). In fact the result 

of refluxing Mo(CO)^ with N-methylpyridinium iodide in tetra-

hydrofuran was soon identified as [C^H^NCH^][Mo(CO)^1] (108). 

A general preparative route to the halopentacarbonylmetallates 
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M(CO)gX" (M = Cr, Mo or W and X = CI or Br) was published in 

1963 to complete the possible metal-halide combinations in 

this ion (109) . Three carbonyl bands were observed in the 

-1 -1 
infrared spectra between 1840 cm and 2065 cm in agreement 

with the number of bands expected for the predicted sym­

metry of M(CO)gX" anions. The metal carbonyls and halide 

salts reacted rapidly in diethylene glycol dimethyl ether at 

120°C until carbon monoxide evolution ceased. Yellow crystals 

were isolated in each case. 

The reaction of M(CO)gX (M = Mo or W and X = Br or I) 

with X^ at room temperature oxidizes the metal to the 2+ oxi­

dation state with loss of one carbon monoxide ligand and addi­

tion of the two halogen atoms to form the M(CO)^Xj anion. 

Elemental iodine was first employed to prepare the MCCO)^!^ 

anions (M = Mo or W) (110) and later use of elemental bromine 

produced the analogous bromide anions (111) , but the chloro 

analogs were not reported. Oxidation of M(CO)gX is a conven­

ient route to the bromo and iodo trihalotetracarbonyl metal-

lates but it was necessary to employ a different scheme to 

isolate Mo(C0)^Cl2". The previously characterized neutral 

metal (2+) dichlorotetracarbonyl compounds, M(C0)^Cl2 (M = Mo 

or W), served as starting materials for the addition of quater­

nary ammonium chlorides in dichloromethane under oxygen-free 

and moisture-free conditions to form the trichloro anion 

derivatives (112) . The neutral parent compounds were prepared 

under anhydrous conditions by oxidizing either molybdenum or 
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tungsten hexacarbonyl with elemental chlorine at -78®C. 

The systematic displacement of carbonyl ligands to form 

halide bridged polynuclear compounds was extended beyond 

MOgClg^" and MOgClg^" to the reaction of MOgClg^ with 

NbCCOj^Clg" to produce a triltieric species (113). The product 

isolated from the reaction shown in Equation 21 was postulated 

MOgClgZ- + MofCOj^Clg" MOgCl^g^' + 4C0 (21) 

to be a linear array of three molybdenum atoms all octahedrally 
» 

coordinated with trigonal faces shared between adjacent metal 

atoms. This article reported conductivity measurements, infra­

red data, electronic spectra and magnetic susceptibility data 

for [(CHsCHzCHgj^NlgMozClg, [(n-C^Hg)^N]2Mo2Glg and 

[(R"C^Hg)^N]gM0gCl22' 

The rational syntheses of polynuclear molybdenum halides 

via "conproportionation" reactions such as those described 

above are not paralleled by the corresponding tungsten systems. 

Tungsten hexachloride and chloropentacarbonyltungstate react 

in dichloromethane in the presence of added chloride to form a 

2 -mixture of monomeric products which include WCl^ and WCl^ 

(114). In the absence of added chloride salts polynuclear 

tungstates could be isolated from these same reactants, but 

the nature of the products depended on the cation present as 

well as the solvent employed and the stoichiometry of the reac­

tants. Violet-colored [ (CHJCH2CH2) ̂N] 2W2Clg v/a; isolated from 

the one to one reaction of WCl^ and W(CO)gCl in dichloro-
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methane. Tetrabutylammonium cations under similar conditions 

2 -
formed no detectable amounts of WgClg but rather the un-

usual W^Cl^y " anion was inferred from spectroscopic data to 

be present in these solutions. The difference in products 

depending on the cation present was attributed to the virtual 

insolubility of [(CH2CH2CH2)^N]2W2Clg in dichloromethane while 

[(n-C^Hg)^N]2^2^19 is quite soluble and thereby promotes 

2 _ further reaction. The W^Cl^y " species referred to above was 

not isolated from the dichloromethane solvent, but the use of 

tetrahydrofuran as a reaction solvent precipitated the [(n-

C^Hg)^N]2W^Cl^y solid which exhibited an effective magnetic 

moment of 1.9 5 BM at 298°K consistent with a single unpaired 

electron as required by the stoichiometry. 

Several examples of dinuclear compounds which contain 

carbon monoxide ligands and bridging halide ions provide a 

basis for the concept of generating potential metal-metal 

attractions through the use of metal carbonyl reactants. One 

might hope that establishing a bridged dimeric compound would 

promote metal-metal bonding by synthetic manipulations of the 

ligands and metal oxidation states since the two metal atoms 

would be held in close proximity by the halide bridges. A 

review of halide-bridged polynuclear compounds of group VI 

which have been characterized provides hope for intermediates 

of a similar nature, perhaps in route to metal-metal bonded 

compounds. 

In a study concerned with ir-allyl complexes of molybdenum 
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and tungsten Murdoch prepared halide-bridged dimers of the 

formulation [M2Yj(C2Hg)2(CO)^] (where M = Mo or W and Y = CI 

or Br) via the reaction shown in Equation 22 (115). All the 

halide present in the resulting dimeric anion was derived from 

2M(C0);X- * 3C3H5Y ̂  

+ CjHjX + X" + 6C0 

the allyl halide; either C^H^Cl or CgHgBr effected reaction 

while allyl iodide failed to react with the pentacarbonylhalo-

metallate. The presence of three carbonyl stretching bands in 

the infrared spectra above 1840 cm'^ was consistent with the 

absence of bridging carbon monoxide ligands. Reaction of the 

dinuclear product with pyridine produced monomeric (n-C2Hg)Mo 

(CO)2Cl(py)2 and tetraethylammonium chloride. Cleavage of the 

halide bridges was not unexpected in this reaction since no 

metal-metal bond is necessary in the dimeric anion for each of 

the metals to attain the noble gas configuration. 

The anionic dimers [M2(CO)gX2]^ (M = Cr, Mo, W and X = 

CI, Br, I) have been prepared either from arenemetal tricar-

bonyls reacting with tetraalkylammonium halides or directly 

from the metal hexacarbonyls and halide salts (116). These 

triply-bridged dimers with all the halides present in bridging 

positions satisfy the effective atomic number rule without 

invoking metal-metal bonds. The compounds were generally un­

stable in the presence of oxygen, particularly when in solu­

tion. It is perhaps surprising that aqueous solutions were 
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stable under oxygen-free conditions and in fact conductivity 

studies were performed in water. Two carbonyl bands were 

-1 -1 
typically observed in the infrared at 1880 cm and 1740 cm 

which is consistent with the presence of three terminal cis-

carbonyls on each metal atom trans to ligands which are not 

ïï-acceptors. Monomeric Mo(py)^(CO)j, for example, absorbs at 

1 8 8 8  c m  ̂  a n d  1 7 4 6  c m  ̂ '  

Neutral dimeric carbonyl iodides of molybdenum and tung­

sten were prepared photochemically from the reaction of vari­

ous iodination reagents with the metal hexacarbonyls (117). 

The [M(C0)^I]2 compounds were best prepared from silicon 

tetraiodide for the molybdenum case and from elemental iodine 

in the tungsten case. Infrared data and analytical data com­

plemented the observed diamagnetism of the solid to suggest 

a conlateral bioctahedron bridged by two iodides with a formal 

single bond uniting the d^ metal atoms to cause spin-pairing. 

An x-ray structural determination of Mo2(CO)gl2 confirmed the 

hypothetical structure and a molybdenum-molybdenum distance of 
O 

3.16A compared favorably with other single bond distances in 

organometallic molybdenum dimers. 
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EXPERIMENTAL 

The reactants and products in this study displayed vary­

ing degrees of sensitivity to moisture and oxygen. Schlenk 

techniques proved to be the most efficient procedures for 

manipulating these materials since routine operations could 

be performed conveniently and quickly,, and yet careful work 

under a nitrogen atmosphere protected air sensitive solids 

and solutions from decomposition. Pre-purified nitrogen gas 

was passed directly from the cylinder to a T-joint leading to 

a mercury bubbler which maintained an excess nitrogen pressure 

of approximately five centimeters of mercury in the system. 

Solvent transfers were commonly performed with a syringe after 

extensively flushing the syringe with nitrogen gas. Solid 

products were stored in Schlenk tubes either under vacuum or 

under a nitrogen atmosphere and solid samples for physical 

measurements were prepared in a drybox as described in Part I. 

Further details of the Schlenk techniques employed will be 

presented as necessary in the section dealing with synthetic 

methods. 

Materials 

Tungsten hexacarbonyl was purchased from Pitssure Chemi­

cal Company and used as received. 

Tetrapropylammonium bromide was obtained from Eastman. 

Discoloration of the solid in the bottle was commonly observed 

and recrystallization from an ethanol solution was promoted by 
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dilution with ether followed by cooling the resultant solu­

tion. Crystals of the colorless salt were rinsed with anhy­

drous ether and dried under dynamic vacuum. 

Chlorobenzene was stored over 4-A molecular sieves in the 

Fisher Scientific Company commercial bottle in which it was 

received. Nitrogen gas was vigorously bubbled through the 

solvent for five to ten minutes prior to use to expel dissolved 

molecular oxygen. 

1,2-Dibromoethane was obtained from J. T. Baker Chemical 

Company and handled in the same manner as chlorobenzene to 

minimize water and oxygen contamination. 

Acetonitrile from Fisher Scientific Company was dried 

over phosphorus pentoxide and distilled under nitrogen into 

a Schlenk storage flask for later use. 

Analytical Procedures 

Gravimetric analysis for tungsten was performed by direct 

ignition to the oxide, WO^. Analytical samples of between one 

and two hundred milligrams were quickly transferred into 

tared porcelain crucibles and weighed directly to avoid cumu­

lative errors due to the extra handling and measurements 

necessary for weighing by difference. Addition of a few ml of 

dilute nitric acid and gentle heating initiated hydrolysis. 

Addition of concentrated nitric acid promoted complete oxida­

tion and the solutions were cautiously evaporated to dryness 

to avoid spattering. At this point a steady increase in tem­
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perature caused the fine yellow powder to darken until a grey 

solid remained after applying maximal heat to the crucibles 

while on the hotplate. The sample crucibles were then trans­

ferred to the muffle furnace and ignited at 550®C for several 

hours. The lemon yellow of tungsten trioxide was the only 

color evident when the samples were removed from the muffle 

furnace and cooled in a desiccator prior to weighing. 

Bromide samples were weighed directly into 250 ml beakers 

and fifty ml of concentrated sodium hydroxide solution of 

known molarity were immediately added to each beaker. The 

dropwise addition of hydrogen peroxide decomposed the result­

ant brown solid to rapidly produce a clear solution which was 

subsequently boiled to remove any remaining peroxides. Two 

equivalents of acetic acid per equivalent of base initially 

present were added to the cooled solutions to form an acetic 

acid-sodium acetate buffer of pH 4.8 and thus avoid the precip­

itation of insoluble polytungstates which accompanies acidifi­

cation to pH values near one. The solutions were then titrated 

potentiometrically with a standardized silver nitrate solution 

using a silver sensitive working electrode and a saturated 

calomel reference electrode. 

Carbon and hydrogen were determined by Mr. J. J. Richard 

of the Ames Laboratory Service Group. 

Synthesis 

The preparative route to [(n-CgHyj^NjgWgBrg was conven­

iently carried out in a single reaction vessel in two steps, as 
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isolation of the tetrapropylammonium bromopentacarbonyltung-

state intermediate was unnecessary. A schematic diagram of 

the Schlenk reaction vessel equipped with a water-cooled con­

denser and connected to an inverted graduated cylinder to 

monitor gas evolution is shown in Figure 13. The one-piece 

construction of the 200 ml flask and condenser was convenient 

to handle, and the location of the stopcock above the con­

denser proved to be especially effective in protecting the 

solution below and also minimized the loss of hot solvent 

vapors when the vessel was opened under a vigorous nitrogen 

gas flow. 

In a typical reaction the solid reactants, W(CO)^ (3.52 g, 

10 mmole), (n-C^Hyj^NBr (2.66 g, 10 mmole), were loaded along 

with a magnetic stirbar into the reaction flask without pre­

cautions. The vessel was then left under dynamic vacuum for 

approximately thirty minutes to remove moisture and oxygen 

before purging with nitrogen gas and syringing in about forty 

ml of chlorobenzene. The colorless reactants appeared insolu­

ble at room temperature. The reaction flask was lowered into 

an oil bath heated to near 150°C with a magnetic stirrer posi­

tioned to thoroughly mix the solution as it was heated. A 

rapid reaction ensued; the carbon monoxide gas evolved was 

collected for volume measurement. The cessation of.continuous 

evolution of carbon monoxide signaled completion of the reac­

tion within fifteen minutes and the oil bath was lowered to 

allow the golden solution of [(C2Hy)^N]W(C0)gBr to cool to 
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[(n-CgHyj^NJzCWzBrg] ^ ^ 
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room temperature. 

The second and final step in the preparative sequence was 

initiated by adding approximately fifteen ml of 1,2-dibromo-

ethane to the solution and heating to reflux. The solution 

color darkened quickly and a fine black precipitate was evi­

dent within thirty minutes. Continued reflux for six hours 

or more was required to expel all the carbon monoxide from 

the product which was isolated as an insoluble black solid 

and dried under dynamic vacuum. 

The true color of the product was a dark forest green 

which was observed only after grinding a bit of the black, 

macrocrystalline solid. The material was extremely soluble 

in acetonitrile, and recrystallization was accomplished by 

slow solvent removal under vacuum from a saturated aceto­

nitrile solution. A double flask united with a hollow, in­

verted U-tube was utilized for the recrystallization to both 

hold the solution and trap the distilled solvent in an ice-

water bath. Crystals of the product seemed stable for a period 

of hours when exposed to the atmosphere, but grinding the sam­

ple in air resulted in quick decomposition. Anal. Calcd. for 

[(CgHyj^NjgWzBrg: W, 25.19; Br, 49.27; C, 19.75; H, 3.87. 

Found: W, 25.14; Br, 48.99; C, 19.73; H, 4.25. 

Physical Measurements 

Temperature dependent magnetic susceptibility measure­

ments were made with the Faraday balance constructed by 
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Converse (55). Calibration of the magnet and sample prepara­

tion were performed as described in Part I of this thesis. 

Temperatures within the range of 77 to 300°K were accessible 

in the cryostat sample chamber, with liquid nitrogen employed 

as a coolant offset with heat supplied by a variable resis­

tance heater. The voltage generated by a copper-constantan 

thermocouple was measured to determine the temperature in the 

area of the sample bucket. A Cahn Electrobalance measured the 

force on the sample at each of five magnetic field strengths 

monitored for every temperature. 

Infrared samples were prepared as Nujol mulls in the dry-

box. A Beckman IR-4250 Spectrophotometer covered the region 

accessible with sodium chloride windows (700 cm"^ to 4000 cm 

and a Beckman IR-11 instrument was employed with samples held 
_ 1 

by polyethylene sheets to record absorptions below 700 cm 

Electronic spectra were recorded with the Cary 14 Spectro­

photometer and the cell described in Part I, but solvents were 

syringed into the cell under a nitrogen flush rather than dis­

tilled. 

A pycnometric density measurement involved careful deter­

mination of the pycnometer volume using the known density of 

distilled water at 25.0 ®C as a standard. Next the density of 

a benzene sample was determined for later use as an inert sol­

vent to fill the pycnometer space remaining after introduction 

of the solid. A large quantity of the solid of interest (~500 

mg) was then weighed into the pycnometer and benzene was dis-
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tilled into the vessel for the final weighing. 

A 114.59 mm Debye-Scherrer camera with nickel-filtered 

Cu KQJ radiation was used to obtain powder diffraction patterns. 

The finely ground samples were loaded in 0.2 mm thin-walled 

Lindemann capillaries in the drybox and temporarily sealed 

with silicone stopcock grease. Upon removal from the drybox 

the capillaries were quickly sealed permanently with a small 

flame while the sample remained under nitrogen. 

Single crystal x-ray data were collected with Mo radia­

tion on the diffractometer described in Part I. Two distinct 

data sets were obtained on two separate crystals of bis(tetra-

propylammonium)nonabromoditungstate and different computer con­

trolled measurement techniques were employed in the two cases. 

The first crystal of [(C^H^)^N]2W2Brg chosen for data 

collection was exposed to the atmosphere during the mounting 

procedure. The crystal was wedged into a 0.2 mm capillary and 

sealed with a small flame. Preliminary alignment x-ray photo­

graphs were taken with a Weissenberg camera (Cu radiation) 

and a Buerger precession camera (Mo radiation) . The orien­

tation matrix defining the relationship of the reciprocal lat­

tice to the angular diffractometer settings was deduced from 

Polaroid exposures as part of the integrated orientation pro­

cedure developed by Professor R. A. Jacobson at the Ames 

Laboratory (118). Intensities were measured via a stationary 

counting procedure following computerized peak height maximi­

zation based on the initial settings for a particular reflec­
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tion as calculated from the orientation matrix. Three stand­

ards with 20 values between 20° and 30® verified the orienta­

tion of the reciprocal lattice network after every seventy-

five reflections and altered the angular settings if required. 

Fifteen independent reciprocal lattice points (2O°<20<3O°) 

were individually optimized to obtain data which served as 

input for a least-squares calculation of the unit cell param­

eters. Data were collected to a 20 limit of 45° in two unique 

octants in accord with the monoclinic symmetry displayed by 

the crystal. Intensity variations due to absorption were 

experimentally observed perpendicular to the needle axis by 

rotating the crystal around 0 while X was held at 90.0° and 

the intensity of the same reflection was monitored every fif­

teen degrees. The crystal was photographed with a magnifica­

tion factor of one hundred by Mr. Harlan Baker of the Ames 

Laboratory to allow the macroscopic crystal dimensions to be 

accurately measured for use in absorption correction calcula­

tions . 

A second crystal was later mounted under oxygen-free 

conditions in the modified drybox located in Professor J. D. 

Corbett's laboratory. The data collection procedure was 

performed as above, but integrated intensities were collected 

by the w-scan technique of summing counts for one-half second 

every one-hundredth degree in omega away from the calculated 

center of the peak until the counts fell below background as 

determined by background counts on both sides of the peak 
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prior to integration. Again fifteen independent high-angle 

reflections (3O®<20<35°) were optimally centered to furnish 

data for unit cell computations, absorption effects were moni­

tored on a specific reflection at x = 90.0° as a function of 

0, and magnified pictures of the crystal were obtained for 

purposes of measuring the crystal dimensions. 
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RESULTS AND DISCUSSION 

Synthesis 

The majority of preparative reactions which form metal-

metal bonded metal halides are either reductions of high oxida­

tion state halides or disproportionations of intermediate 

oxidation state halides (1). Such synthetic approaches were 

discussed in the general introduction and documented for tan­

talum halides in the literature review of Part I. Direct 

oxidation of elemental metals with halogenating agents has 

only rarely been a method of choice for producing metal-metal 

bonded compounds. 

Consideration of the chemical properties deemed most 

important in likely reactants suggested that metal carbonyl 

species could be profitably employed in preparing low valent 

metal halides and perhaps replace the more common high-temper-

ature, sealed tube techniques in some instances. The conven­

ient synthesis of dimolybdenum tetraacetate exemplifies the 

advantages one would hope to extend to other preparations, as 

one can simply reflux molybdenum hexacarbonyl in acetic acid 

and oxidation leads to the molybdenum(II) dimer which contains 

a quadruple metal-metal bond. The synthesis can be performed 

with facility since the air stable reactants can be handled 

with ease and Schlenk glassware is suitable for the reaction 

vessel. Conversion of the acetate dimer to the anionic octa-

chlorodimolybdate(4-) dimer is easily accomplished in concen­
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trated hydrochloric acid. 

During the course of this work the idea of employing 

group VI halocarbonylmetallates as reactants was successfully 

implemented by R. A. D. Wentworth and co-workers. In the work 

published by Wentworth the oxidation-reduction reaction 

between a high oxidation state metal halide and a low valent 

carbonyl containing metal species produced intermediate oxida­

tion state halide dimers by what could be termed a conpropor-

tionation reaction (113). The hypothetical synthetic routes 

we visualized differed in emphasis from those of Wentworth in 

that no anhydrous metal halide would be required as a reactant. 

If one could control the reaction of carbonyl moieties with 

halogenation reagents to limit the oxidation state of the metal 

it might be possible to eliminate the precursory anhydrous 

halide preparation. 

R. J. Hoxmeier initiated research in the area of thermal 

decomposition of group VI trihalotetracarbonylmetallates in 

noncoordinating solvents in this laboratory. The synthetic 

basis for these reactions was to take advantage of the in­

creased lability of carbon monoxide as the oxidation state of 

metal increased to expel the carbonyl ligands under reflux and 

force the low valent metal species to become ligand deficient. 

The unusual electronic stability imparted to low oxidation 

state metals by carbonyl ligands accepting metal electron 

density via TT interactions has been well documented, and one 

might hope that favorable metal-metal energetics would be 
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necessary to overcome the loss of stability accompanying car­

bon monoxide loss from compounds containing oxidation state 2+ 

metals. The concept of producing highly reactive metal halide 

intermediates by thermal displacement of carbon monoxide 

ligands would seem to be a well-founded approach to promoting 

metal-metal attractions based on the above considerations. 

One can envision the loss of four carbonyls from to 

produce MX^", a hypothetical intermediate which has a valence 

and ligand ratio appropriate for forming metal clusters as 

ascertained by criteria presented in the general introduction. 

The use of a noncoordinating solvent is dictated as a means of 

avoiding the formation of monomeric metal halide adducts. 

This synthetic philosophy prompted considerable effort to be 

expended in hopes of isolating tractable products from reac­

tions implementing the above concepts. 

The preparation of (R^N)M(CO)gX and subsequently (R^N) 

MfCOj^Xg (M = Mo or W, X = Br or I, and R = CgHg, n-C^Hy, or 

n-C^Hg) was performed with a variety of solvents prior to 

thermal decomposition of the metal(II) species under refluxing 

conditions. The salts were originally prepared in oxygenated 

solvents such as diglyme (109) , but the coordinative tenden­

cies of ethers and other donor solvents directly conflicted 

with the proposed mechanistic scheme; thus the use of solvents 

without donor capabilities which would remain inert under 

vigorous reflux was required. Chlorobenzene proved to be an 
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excellent reaction medium with sufficient solubilizing proper­

ties to form M(CO)gX" at reflux and MCCOj^Xg via elemental 

halogen oxidation at room temperature and still remain inert 

during the subsequent thermal decomposition step. Isolation 

and purification problems were the dominant difficulties en­

countered in working up products of various reactions, and 

insolubility of the resultant tetraalkylammonium salts in 

common organic solvents imposed serious limitations on char­

acterization techniques. 

Having established the general rationale which guided 

synthetic attempts in this study, the unsuccessful synthesis 

of [(n-CgHyj^NjfWCCO^gBr] in 1,2-dibromoethane can be pre­

sented in perspective. The boiling point and dielectric con­

stant of l,2-C2H^Br2 are similar to those of chlorobenzene, 

and a cursory exploration of the tungsten hexacarbonyl reac­

tion with tetrapropylammonium bromide followed by elemental 

bromine oxidation to form [(n-C2Hy)^N][W(C0)^Br2] and finally 

thermal decomposition was planned with 1,2-dibromoethane as a 

solvent. However, unlike the chlorobenzene medium which pro­

duced a golden solution of [(n-C^H^)^N][W(CO)^Br] in the first 

step during fifteen minutes of reflux and then stabilized, the 

1,2-dibromoethane solvent led to a dark solution with gas 

evolution proceeding far beyond the amount corresponding to 

the loss of one carbonyl ligand per tungsten when [(n-C^Hyj^N] 

[Br] and W(CO)^ were refluxed in solution. The excess gas 



www.manaraa.com

140 

evolution clearly indicated that the reaction had passed 

beyond W(CO)gBr', and the reaction was allowed to proceed to 

completion at reflux overnight. The insoluble black solid 

which resulted ground to display a clean, but not bright, 

- 1 
green color. The infrared spectrum from 700 to 4000 cm 

indicated the presence of tetrapropylammonium cations and the 

absence of carbon monoxide ligands. Preliminary analyses of 

the product indicated the formulation [(n-C^H^)^N]2[W2Brg] was 

deserving of further investigation: W, 25.12% (calcd. 25.19%); 

Br, 48.00% (49.27%); Br/W, 4.40 (4.50). The mass of the solid 

isolated was 6.4 g compared to a total mass of 4.5 g for the 

ten millimolar quantities of tungsten, bromide, and cation in 

the solid reactants. In fact, only 0.8 g of bromide had been 

added to the system in the form of [(n-C^H^)^N][Br] and 3.1 g 

were present in the product, so it was clear that 1,2-dibromo-

ethane was not functioning as an inert solvent, but rather was 

serving as a source of bromine in this reaction. 

A second preparation of this same product was carried out 

using chlorobenzene as a solvent to form the bromopentacarbon-

yltungstate anion cleanly prior to adding excess l,2-C2H^Br2 

as an oxidant in a second step as expressed in Equations 23 

and 24. A red solution with lots of dark, insoluble material 

C6H5C1 

[Cn-C3Hp,N][Br] + W(CO)^ reflux > 

15 minutes ^23^ 

[ (n-C2Hy)4N][W(C0)sBr]  + CO(g) 
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[(n-C,H,)4N][W(C0)5Br] + > 

9 hours 
(24) 

[Cn-CgHyj^NjzrWzBrg] 

was evident at reflux, but when cooled the solution assumed a 

light brown color similar to the appearance of weak tea. The 

black, microcrystalline precipitate smeared to the familiar 

green color observed previously, and quantitative analyses for 

W, Br, C and H were in excellent agreement with the values 

calculated for [(n-C^H^)^N]2[W2Brg]. Yields of 80 to 90% were 

consistently obtained when the synthesis was repeated. The 

product was extremely soluble in acetonitrile, and large crys­

tals were obtained by recrystallization from dark green aceto­

nitrile solutions via slow solvent removal under vacuum. 

A possible reaction mechanism for the oxidation of the 

tungsten carbonyl species is suggested by the well known reac­

tion of vicinal dihalides with metallic zinc to generate 

alkenes. Halogen addition across a carbon-carbon double bond 

is sometimes employed to protect the alkene linkage while 

other functional groups are manipulated, since treatment of 

the resultant dihalide with zinc will regenerate the original 

double bond by dehalogenation. The site of chemical interest 

in such a reaction is the organic moiety rather than the oxi­

dized zinc halide, but in the reaction of bromopentacarbonyl-

tungstate(1-) and 1,2-dibromoethane it is the inorganic 
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product which is of concern, and the only question related to 

the reduced organic product is its identity. Assuming ethylene 

results from the reduction of l,2-C2H^Br2 allows one to formu­

late a balanced equation for the redox reaction as shown in 

Equation 25. Identification of ethylene in the gaseous reac­

tion products would serve to confirm the oxidative function of 

4W(C0)gBr" + ^ + 20 CO(g) 

(25) 
+ fCzH^Cg) 

the dibromoethane. Passage of the evolved gas through benzene 

resulted in a very dilute solution of ethylene in benzene as 

evidenced by the proton nuclear magnetic resonance spectrum 

which showed a small singlet at 5.40 6 units relative to ben­

zene at 7.32. The gaseous species show chemical shifts of 

5.18 and 7.13 6 units for ethylene and benzene (119), respec­

tively, so the literature difference of 1.95 compares well 

with the experimentally observed difference of 1.92 6 units 

for the identification of ethylene. The very low solubility 

of ethylene in benzene limited the quality of the nmr spectral 

data, and the evidence was not considered conclusive. A defin­

itive identification was possible via high resolution mass 

spectral analysis. An evacuated flask was placed in the ex­

haust line of the reaction vessel by means of a T-joint, and 

after addition of the dibromoethane and ten minutes of vigorous 

reflux the flask was opened to collect a sample of the evolved 
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gas. The reaction was performed as usual under a molecular 

nitrogen blanket, and hence all three of the gaseous compounds 

present had a mass of nearly twenty-eight amu (CO, 27.995; 

, 28.006; and C^H^, 28.031), but a high resolution mass 

spectrum clearly indicated the presence of appreciable quan­

tities of ethylene. Thus the proposed reaction equation was 

satisfactorily confirmed. 

One question that poses itself is why does this reaction 

2 _ 
form the unusual odd electron dimer, W2Brg , as opposed to 

some other bromotungstate, such as the more commonly encoun-

tered MgXg " anion. In this regard it can be noted that the 

[(n-CjHy)^N]2[W2Brg] salt can be isolated and then extensively 

refluxed with 1,2-dibromoethane again without undergoing 

further oxidation, indicating the average tungsten oxidation 

state of 3.5+ is the equilibrium product under these condi­

tions. It seems likely that the initial cation to metal ratio 

of one is important in determining the stoichiometry of the 

final product. The retention of one negative charge per metal 

atom throughout the reaction sequence probably occurs as bro­

mine oxidizes the metal by replacing carbon monoxide in the 

coordination sphere, and hence the resultant dimer is con­

strained to be a dinegative anion and an odd electron compound 

will result from the addition of seven bromines necessary to 

reach the stable MgXg stoichiometry. 

Several points deserve emphasis relative to the synthesis 
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of this dimeric compound. First of all no high oxidation 

state anhydrous metal halide is required as a reactant. Sec­

ond, the reagents are commercially available, easily handled, 

and inexpensive. Third, the entire preparation can be conven­

iently completed in one day, and, finally, good yields are 

reproducibly obtained. 

X-ray Powder Pattern Data 

X-ray powder patterns were routinely obtained to check 

the identity of products. A listing of the estimated relative 

intensities and d-spacings based on the measured 20 values 

recorded with Cu radiation is presented in Table 11. 

Temperature Dependent Magnetic Susceptibility Measurements 

The dimeric formulation [(n-C^H^)^N]2[W2Brg] requires the 

presence of at least one unpaired electron in the ground state. 

A temperature dependent magnetic susceptibility study was under­

taken to examine the magnetic behavior between liquid nitrogen 

and room temperature. Eleven temperatures were selected at 

roughly equal intervals in terms of 1/T and forces were meas­

ured at each of five magnetic field strengths on a nonabromo-

ditungstate sample which had been recrystallized from aceto-

nitrile. The five data points obtained at each temperature 

were plotted in the Honda-Owen form (X vs 1/H), and the value 

of the intercept was employed in later computations to cor­

rect for the presence of any trace ferromagnetic impurities. 
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Table 11. X-ray powder pattern data for [(n-C^Hy)^N]2[W2Brg]^ 

O 
20(degrees) d-spacing(A) Relative Intensity 

9.15 9.66 vs 

9.86 8.96 vvs 

10.96 8.07 s 

15.48 5.72 s 

16.44 5.39 m 

18.84 4.71 m 

20.04 4.43 vw 

21.74 4.08 vw 

27.52 3.24 w 

28.28 3.15 w 

36.85 2.44 vw 

37.90 2.37 w 

46.74 1.94 vw 

^Data obtained with Cu radiation. Abbreviations: 
s, strong; m, moderate; w, weak; v, very. 
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The diamagnetic contribution due to the Teflon sample bucket 

was subtracted to leave only the susceptibility per gram of 

sample. Multiplication of the gram susceptibility by the 

molecular weight of [(n-C^Hy)^N]2[W2Brg], 1459.6 g/mole, led 

to the molar susceptibility value which was then plotted vs 

the inverse temperature, 1/T. The plot of vs 1/T was linear 

as shown in Figure 14 and indicated the simple Curie formula­

tion was valid as expressed in Equation 26 where is the 

~ * %D * ̂ TIP 

molar susceptibility, Xg is the diamagnetic contribution due 

to the paired electrons present, X-j-jp is the temperature inde­

pendent paramagnetic contribution, and C is the Curie constant. 

The Curie constant is defined in terms of Avogadro's number 

(N), the Bohr magneton (3), the effective magnetic moment 

(Peff)» and Boltzmann's constant (k) in Equation 27. A com-

C = NG^p^ffZ/Sk (27) 

puterized linear least-squares fit to the eleven data points 

confirmed the 1/T dependence as evidenced by the values shown 

in Equation 28. The numerical values of the slope and inter-

Xm = (.370+.002) (1/T) - (452+19)xlD"^ emu/mole (28) 

cept a^llow one to calculate the effective magnetic moment and 

the temperature independent paramagnetic contribution, respec­

tively. 

M e f f  =  2 . 8 2 8 / C  =  1 . 7 2  B M  ( 2 9 )  
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Figure 14. Curie plot (Xm vs 1/T) for [ (n-C3H7)4n]2[w2brg] 
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X^jp =(-452x10 ^+699xlO"G) emu/mole = 247x10"^ emu/mole (30) 

The value of 1.72 BM for yg££ is entirely consistent with a 

single unpaired electron in the ground state and compares 

favorably with the theoretical spin-only moment of 1.73 BM. 

The temperature independent paramagnetic contribution, based 

on a diamagnetic contribution of -699x10 ^ emu/mole as calcu­

lated from values reported by Selwood (63) , was not unexpected 

in view of the similarity in magnitude to those of other third 

row metal-metal bonded species, such as Ta2Brg(SC^Hg)^ where 

XTIP = 177x10 ^ emu/mole. 

Electronic Spectrum 

A solution spectrum of the nonabromoditungstate(2-) anion 

was obtained in acetonitrile. The energy of the observed band 

maxima and a rough estimate of the corresponding extinction 

coefficients based on weighing a few milligrams of sample into 

the cell are listed in Table 12. No interpretation of the 

spectrum was attempted other than to note that the extinction 

coefficients were very large and thus consistent with signifi­

cant orbital overlap between the two metal centers which would 

be expected to increase the intensities of electronic transi­

tions. A more complete discussion of absolute intensities was 

presented in Part I. The extinction coefficients reported 

here for WgBrg " are similar in magnitude to those published 

for W2Clg^" in dichloromethane: 1040 M ^cm ^ and 1700 M ^cm ^ 

for bands at 13,530 and 17,200 cm respectively (105). 
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Table 12. Electronic absorption band parameters for 

EnergyClO^cm"^) Extinction coe££icient(M ^cm 

13.0 1100 

16.1 1300 

18.2 1100 

23.8 5100 

27.0 6600 

^Spectrum obtained in acetonitrile solution. 

Table 13. Tetrapropylammonium 
1400 cm-l]& 

infrared frequencies (700-

[(n-CsHyj^NlzCWzBrg] M][Br] 

745 s 764 vs 

808 w 795 wr 

841 m 847 s 

867 m 908 s 

912 m 936 w 

962 s 970 vs 

978 s 1010 s 

1032 s 1030 s 

1100 m 1058 s 

1167 m 1101 3 

1180 m 1160 s 

1267 w 1260 vw ,sh 

1310 w,sh 1274 w 

1321 w 1290 m 

1348 m 1320 

1352 

m 

s 

^Spectra obtained from Nui 
s, strong; m, moderate; w, wea* 

ol mulls. Abbreviations: 
:; sh, shoulder. 
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Infrared Spectra 

Infrared data in the region from 700 to 4000 cm ^ estab­

lished two relevant facts concerning the composition of the 

product. The presence of tetrapropylammonium cations in the 

solid was confirmed by comparison with tetrapropylammonium 

bromide infrared data. In addition, the absence of carbonyl 

ligands was definitely established by the absence of absorp­

tions between 1600 and 2600 cm ^. The infrared absorptions 

observed in [(n-C^H^)^N]2[W2Brg] and [(n-C^H^)^N][Br] are pre-
_ 1 

sented in Table 13 for the region from 700 to 1400 cm 

The low frequency region of the infrared spectrum was 

dominated by two principle absorptions at 232 and 208 cm ^. 

These very strong bands were assigned to terminal metal-
I t  I  

halogen stretching vibrational modes of symmetries Ag and E 

due to obvious parallels with similar assignments in a normal 

coordinate analysis of compounds by Ziegler and Risen 

(120). The above two symmetry modes are infrared allowed 

while the remaining terminal vibrations of a '̂ and e" symmetry 

are not allowed. Some comparable metal-chloride terminal vi­

brational frequencies in MgXg^ (n = 2,3) anions are listed in 

Table 14. Particularly noteworthy is the dependence of the 
T ^ 

observed intensity of the WgClg anion vibrations on the 

cation present in the lattice. Only the tetraalkylammonium 

cation resulted in very strong intensities for both the A2" 

and e' terminal modes. Furthermore, the other low frequency 
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Table 14. Low frequency metal-halogen vibrations in MgXgH" 
anions 

Compound Terminal metal-halogen vibrational modes^ 
Ccm-1) 

E' 

t(n-C2H,),N]3M02Clgb 318s 290s 

[(n-C^Hgj^NljMOjClg'' 345s 305s 

CSjWzClg 313vs 282w 

K^WzClgC 313vs 28 5w 

[(n-C^Hgj^NjgWzClgC 311vs 289VS 

[Cn-CsHyj^NlgWgBrg* 232vs 208vs 

^All data obtained on Nujol mulls. Abbreviations: s, 
strong; w, weak; v, very. 

^Data from reference 113. 

^Data from reference 120. 

'^This work. 
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bands in [(n-C^Hg)^N]^[W2Clg] were of only moderate intensity 

or less relative to the two very intense absorptions mentioned 

above; such a spectrum is consistent with the present observa­

tion of only two strong bands in [(n-C^H^)^N]2[W2Brg]. The 

frequencies of these two bands are in good agreement with the 

expected vibrational absorptions based on the following logic. 

One can legitimately compare M^Clg^" vibrational frequencies 

with those of MgBrg^ as a function of the ratio of the halide 

masses. It is known that metal-halogen stretching frequencies 

generally increase as the oxidation state of the metal in-
7 _ 

creases, and this trend is reflected in the data for MOgClg 

2 -
and MOgClg " in Table 14. The sensitivity of infrared bands 

to the oxidation state of the metal invalidates a comparison 

2 _ % ̂ 
of W^Brg and W2Clg metal-halogen frequencies on a mass 

basis alone. A better gauge is to note the similarity between 

the frequencies in W^Clg and MOgClg ; it is common for iso-

electronic compounds of second and third row group VI metals to 

display metal-halogen stretching vibrations of nearly identical 

frequencies. One can then predict that W2Brg " would probably 

have metal-halogen force constants producing frequencies rela-

2 _ 
ted to those of MOgClg by the square root of the halogen 

mass ratio. The square root of the mass ratio of bromine to 

chlorine is 1.50 and division of the MOgClg^" A2" and E' vibra­

tional energies by this factor leads to predicted values of 230 

and 203 cm"^, respectively, for similar modes in WgBrg^". 
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These predicted energy values agree well with the frequencies 

observed for tungsten-bromine terminal vibrational modes in 

the nonabromoditungstate(2-) anion which were located at 232 

and 208 cm'^. 

X-ray Structural Determination of [(n-C^N]2[W2Brg] 

In order to firmly establish the exact structure of the 

dimeric anion in [(N-CgHyj^NjgfWgBrg] an x-ray structural 

determination was undertaken. Although a confacial biocta­

hedral structure was postulated, the drastic structural re­

organization accompanying the one-electron oxidation of 

4 - 3 -
MogClg to MOgClg offered some support for bizarre struc-

7 -
tural possibilities in the case of the WgBrg " anion. Pre­

vious x-ray data had determined confacial bioctahedral struc-
T _ 

tures for many MgXg ' dimers of group VI metals (77) , but no 

structural data had been published on the extant odd-electron 

7 - 7 -
dimeric anions, MOgClg or WgClg , nor had the structure of 

3 " 
W2Brg been reported. Our initial expectations were realized 

when a confacial bioctahedral nonabromoditungstate(2-) anion 

was successfully located and refined after collecting data on 

two separate crystals and processing the combined data in the 

manner described below. 

Crystals suitable for x-ray studies were chosen from among 

those recrystallized from acetonitrile. Preliminary photo­

graphs indicated a monoclinic space group, and needle shaped 

crystals proved to have the unique b axis parallel to the 



www.manaraa.com

154 

needle axis. After characterizing the space group and unit 

cell with several crystals a crystal of dimensions 0.05x0.16% 

0.35 mm was chosen for diffractometer data collection. Absorp­

tion corrections were based on photographs taken by Harlan 

Baker of the Ames Laboratory with a magnification factor of 

100. The orientation and shape of the crystal were input to 

the TALABS (121) absorption program to generate a corrected 

data set. The calculated transmission factors varied from 0.4 

to 0.1. 

Location of fourteen random reciprocal lattice points via 

Polaroid film techniques followed by computer calculation of 

the orientation matrix confirmed the 2/m reciprocal lattice 

symmetry. Data collection was initiated assuming a primitive 

unit cell, but after several hundred reflections had been moni­

tored it was concluded that a C-centered cell was appropriate 

as indicated by the absence of all reflections with h+k odd. 

Two octants of data were collected to a 20 limit of 45° using 

Mo Ka radiation. A magnetic tape flaw prohibited transfer of 

the final 1410 data points so it was necessary to recollect 

data for those reflections. A scaling procedure was used to 

normalize the data based on the intensity of the three stand-

ards which were checked after every fifty reflections. A 

total of 2693 data points were retained with I > 3a(I). 

Solution of the structure was based on location of the 

two independent tungsten atoms per asymmetric unit in the 
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Patterson map. A c-glide plane was present as evidenced by 

the absence of hQ^. reflections for & odd. The possible space 

groups were thus narrowed to Cc or C2/c, and the density of 

peaks in the Marker planes corresponding to a two-fold rota­

tion axis dictated the centrosymmetric space group, C2/c, be 

chosen for refinement. Location of the nine bromine atoms 

proceeded from the electron density map phased by the tungsten 

atoms. From the eleven heavy atom positions a confacial bi-

octahedral anionic dimer was confirmed, and a discrepancy 

factor of 16.3% accompanied the refinement at this point. 

Difficulties were encountered in refining the light atom 

parameters of the two independent tetrapropylammonium cations 

in the unit cell. Although the basic structural conformation 

of the four propyl groups tetrahedrally coordinated to each of 

the two central nitrogen atoms was evident, the thermal param­

eters and interatomic distances within each cation were dis­

turbingly variant, and the discrepancy factor leveled off at 

10.0%. The eleven heavy atoms present in [(n-C^H^)^N]2[W2Brg] 

clearly dominated the refinement and the positional coordin­

ates and thermal parameters of these atoms were insensitive to 

the location and refinement of the light atoms present in the 

two cations. Attempts to introduce statistical disorder into 

the light atom positions uniformly failed to improve the re­

finement . 

In hopes of resolving the difficulties encountered in 

refining the parameters describing the twenty-six light atoms 
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a second crystal was selected for data collection. Drybox 

techniques were used to mount the crystal to assure the com­

plete absence of oxygen and moisture. The crystal dimensions 

were 0.21x0.32x0.66 mm as measured on magnified photographs 

obtained in the same manner as for the first crystal. The 

TALABS absorption program was again employed to generate a set 

of corrected intensities from the raw data. The calculated 

transmission factors varied from 0.03 to 0.12 in accord with 

the experimentally observed variation as a function of 0 at 

X = 90.0°. Data were collected to a 26 limit of 50.0°. A 

total of 3285 reflections were stored based on a sorting cri­

terion of I > 3a(I). 

Refinement of the heavy atom positions proceeded as with 

the first data set and location of the light atoms from an 

electron density difference map produced results similar to 

those of the first data set as well. The light atom thermal 

parameters were abnormally large and the carbon-carbon single-

bond distances varied considerably. Although the two data sets 

were collected on different size crystals selected from differ­

ent preparations with different counting techniques employed, 

and in addition a time lag of six months separated the two 

procedures, the results of the two independent refinements were 

basically the same. This observation indicated that a data 

averaging procedure might aid the refinement and would be 

justified as a means of eliminating any systematic errors 

present in either the collection techniques or the absorption 
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computations. 

The two independent data sets were normalized by comparing 

the two scale factors from the best refinement cycle of each 

set and scaling all of the data from one crystal by this fac­

tor. Averaging of equivalent data was then performed, and data 

points with symmetry equivalent indices that deviated by more 

than 20% of the average intensity of the two data points were 

discarded. Of the 2370 equivalent reflections averaged 2255 

agreed sufficiently well fcr use in the final refinement. 

Lattice constants were determined by a least-squares fit­

ting procedure which restricted a and Y to 90.0° as required 

by monoclinic symmetry. Thirty high angle 20 values that had 

been individually centered, fifteen from each crystal, were 

input for the calculation. The following lattice parameters 
O 

and associated errors resulted: a = 36.420 +_ .025A, b = 12.067 

+ .008%, c = 19.624 + .012A, and g = 95.90 + .02°. 

A satisfactory discrepancy factor was obtained with the 

averaged data set. Anisotropic refinement of all nonhydrogen 

atoms led to R = S||[-J||/2|| = 5.0% and = [ZW(|FQ|-

|F^|)^/Zw(Fg)^]^/^ - 6.3%. The scattering factors were those 

of Hanson et aJ^. (73) , with tungsten and bromine modified for 

the real and imaginary parts of anomalous dispersion (74). 

The final positional and thermal parameters are listed in the 

Appendix along with their standard deviations as derived from 

the inverse matrix of the final least-squares cycle (75). 
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Interatomic distances within the cations and a tabulation of 

and are also found in the Appendix. 

The confacial bioctahedral structure of the nonabromodi-

tungstate(2-) anion is illustrated in Figure 15, and the two 

independent cation conformations are shown in Figure 16. Bond 

distances, nonbonded distances, and angles of interest for the 

anion are listed in Tables 15, 16, and 17, respectively. The 

structure is best described as two octahedra sharing a common 

trigonal face such as has been observed for MgXg^ salts struc­

turally characterized by various workers (77). 
o 2 _ 

The tungsten-tungsten distance of 2.601(2)A in W2Brg is 

definitely in the range indicative of strong metal-metal 
O 

attractive forces, even though it is 0.19A longer than the 

corresponding distance in WgClg^". Again one must turn to the 

distortional moduli derived for confacial bioctahedral struc­

tures to correctly assess the extent of the metal-metal inter­

action. A comparison of the generalized parameter values for 

WgBrgZ- (d'/d" = 0.90 , 90.0°-a' = -7.1°, and g-70.5°= -10.5°) 

with those of the other confacial bioctahedral dimers is avail­

able in Table 18. The two tungsten dimers, K2W2Clg and 

[Cn-CjHy)^N]2[W2Brg], are clearly separated from the other 

confacial bioctahedral structures by greater axial distortions 

as reflected in the numerical values of the moduli proposed by 

Cotton and Ucko (77). 

Data for the Mo2Clg " anion has been included in Table 18, 
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Figure 16. A perspective view of the 33% probability thermal 
ellipsoids of the two independent [(n-C%H_).N]+ 
cations 
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O 
Table 15. Bond distances in W^BrgZ-, A 

W(l)-W(2) 2.601(2) 

W(l)-Br(l) 2.535(4) 
W(l)-Br(2) 2 .538(4) 
W(l)-Br(3) 2.544(4) 
W(2)-Br(4) 2.547 (4) 
W(2)-Br(5) 2.525(4) 
W(2)-Br(6) 2.514(4) 
Average 2.534 

W(l)-Br(7) 2.600(3) 
W(l)-Br(8) 2.597(4) 
W(l)-Br(9) 2.602(4) 
W(2)-Br(7) 2.608(4) 
W(2)-Br(8) 2.597(4) 
W(2)-Br(9) 2.599(4) 
Average W-Br^^^^ 2.601 

7 
Table 16. Nonbonded distances in W2Br9^", A 

Br(l)-Br(2) 3.588(5) 
Br(l)-Br(3) 3.671(5) 
Br(2)-Br(3) 3.574(6) 
Br(4)-Br(5) 3.579(5) 
Br(4)-Br(6) 3.558(6) 
Br(5)-Br(6) 3.643(5) 
Average Br^^rminal -Bfterminal 3.602 

Br(l)-Br(7) 3.535(5) 
Br(l)-Br(8) 3.494(6) 
Br(2)-Br(7) 3.472(5) 
Br(2)-Br(9) 3.542(5) 
Br(3)-Br(8) 3.456(5) 
Br(3)-Br(9) 3.531(6) 
Br(4)-Br(7) 3.515(6) 
Br(4)-Br(9) 3.537(5) 
Br(5)-Br(7) 3.535(5) 
Br(5)-Br(8) 3.504(5) 
Br(6) -Br(8) 3.416(6) 
Br(6)-Br(9) 3.509(5) 
Average Br^^rminal "B^bridge 3.504 

Br(7)-Br(8) 4.011(5) 
Br(7)-Br(9) 3.788(5) 
Br(8)-Br(9) 3.891(5) 
Average Brbridge-B'bridge 
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Table 17. Angles (degrees) within W2Brg2" 

W(l)-Br(7 -W(2) 59.93(8) 
W(l)-Br(8 -W(2) 60.10(9) 
W(l)-Br(9 -W(2) 60.02(8) 
Average ̂ "^^bridge" W 60.02 

Br(7)-W(l -Br(8) 101.1(1) 
Br(7)-W(l -Br(9) 93.5(1) 
Br(8)-W(l -Br(9} 96.9(1) 
Br(7)-W(2 -Br(8) 100.8(1) 
Br(7)-W(2 -Br(9) 93.4(1) 
Br(8)-W(2 -Br(9) 97.0(1) 
Average ^^bridge Bfbridge 

Br(l)-W(l -Br(2) 90.0(1) 
Br(l)-W(l -Br(3) 92.6(1) 
Br(2)-W(l -Br(3) 89.4(1) 
Br(4)-W(2 -Br(5) 89.8(1) 
Br(4)-W(2 -Br(6) 89.3(1) 
Br(5)-W(2 -Br(6) 92.6(1) 
Average ^^terminal" ̂ ̂ ^terminal 90.6 

Br(l)-W(l -Br(7) 87.0(1) 
Br(l)-W(l -Br(8) 85.8(1) 
Br(2)-W(l -Br(7) 85.0(1) 
Br(2)-W(l -Br(9) 87.1(1) 
Br(3)-W(l -Br(8) 84.5(1) 
Br(3)-W(l -Br(9) 86.7(1) 
BrC4)-W(2 -Br(7) 86.0(1) 
Br(4)-W(2 -Br(9) 86.8(1) 
Br(5)-W(2 -Br(7) 87.0(1) 
Br(5)-W(2 -Br(8) 86.3(1) 
Br(6)-W(2 -Br(8) 83.9(1) 
Br(6)-W(2 -Br(9) 86.7(1) 
Average ^®^terminal -W-Brbridge)cis 8*'! 

Br(l)-W(l -Br(9) 177.1(1) 
Br(2)-W(l -Br(8) 172.4(1) 
Br(3)-W(l -Br(7) 174.4(1) 
Br(4)-W(2 -Br(8) 172.0(1) 
Br(5)-W(2 -Br(9) 176.5(1) 
Br(6)-W(2 -Br(7) 175.3(1) 
Average (^^terminal -^-B'bridge^trans 174.6 
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Table 18. Selected confacial bioctahedral s tructural comparisons a 

Modulus W 
;_b 

W^ClgS- MOzBrg^ MOzClg^' C^z^rg CrjClg^- MOzClg'-

M-M,D(A) 2.60 2.41 2.82 2.66 3.32 3.12 2.38 

97.1 98 93.9 94.2 83.0 85.8 99.2 

zM-Xbr-M,6(°) 60.0 58 64.9 64.5 80.0 76.4 56.8 

d'/d" 0.90 0.90 0.97 0.98 1.28 1.23 0.89 

90.0°-a'(°) -7.1 - 8 -3.9 -4.2 7.0 4.2 -9.2 

B-70.5®(°) -10.5 -12.5 -5.6 -6.0 9.5 5.9 -13.7 

^Data taken from reference 77 unless otherwise noted. 

^This work. 
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but, as was emphasized in the literature review of Part II, 

the statistical absence of one bridging chlorine invalidates 

quantitative moduli comparisons between this unusual ion and 

true confacial bioctahedral structures. Nonetheless, the 

MOgClg^" data is important in that the strength and struc­

tural influence of repulsions due to the presence of bridging 

ligands is firmly established by noting the distortional param-

3 -
eters calculated for the MOgClg anion are consistently indic­

ative of a greater degree of contraction than in any case 

involving a true triply-bridged dimer of symmetry. Only 

the two tungsten confacial bioctahedral structures have suffi­

cient metal-metal bond strengths to display distortions simi­

lar to those of the unorthodox octachlorodimolybdate(3-) dimer. 

The similarity in the distortional parameter values cal-

culated for WgClg and WgBrg ' lends credence to the excep-
O 

tionally short W-W distance of 2.41A in the nonachloroditung-

state(3-). The comparison of MOgClg ' and Mo2Brg detailed 

earlier in the literature review revealed the advantages of 

considering factors other than the metal-metal distance in 

these structures. Even though the Mo-Mo separation increased 
O 

by 0.16A when bromines replaced chlorines in these molybdenum 

dimers the deviations from the idealized confacial bioctahedron 

were nearly identical for the two compounds. In the case of 

the W^Brg and WgClg dimers a difference in oxidation states 

exists in addition to the difference in the halogen atoms. The 
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O 
W-W distance differs by almost 0.19A between these two com­

pounds, and yet the distortional parameters indicate that the 

degree of contraction is nearly the same in both anions, so 

the variance in the metal-metal bond length can be attributed 

almost entirely to the steric and electronic requirements of 

bridging bromine atoms as compared to chlorine atoms. 

The conclusion that steric requirements of the halide 

ligands dominate the metal-metal separation neglects the elec-

3 ~ 2 ~ 
tron configuration difference between WgClg and WgBTg 

The six valence d-electrons available from the two metal atoms 

in W^Clg^ are predicted to nicely fill the a^' a-bonding 

molecular orbital and the degenerate e' n-bonding orbitals, 

7 -
hence producing a formal bond order of three. The WgBrg 

anion has only five valence electrons available for metal-metal 

bonding, and consequently the a^^' molecular orbital is filled 

but only three electrons occupy the e' orbitals. This leads to 

a calculated bond order of 2 1/2 and a corresponding difference 

of 1/2 in the formal bond orders between the two tungsten di-

mers, which is a somewhat misleading indicator of the actual 

physical difference in the attractive force between the metal 

atoms. An electron in the a-bonding orbital doubtlessly con­

tributes more stability to the metal-metal bond than an elec­

tron in the ir-bonding orbital, but the bond order is function­

ally independent of which bonding orbital is occupied or 

empty; i.e. it is only the number of electrons present in 

bonding orbitals which establishes the bond order and not 
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which bonding orbitals are involved. The contribution of a 

single electron in the n-bonding metal-metal molecular orbi­

tals may be a relatively minor force in determining the actual 

metal atom separation. Certainly examining the results of 

comparing MOgClg^ and MOgBrg^" in light of a similar compari-

3 ~ 2 -
son between WgClg and WgBfg guides one toward such an 

evaluation of the impact of altering the bond order by removal 
O 

of one TT-bonding electron. The 0.19A elongation observed in 

the nonabromoditungstate(2-) relative to the nonachlorodi-
O 

tungstate[3-) metal-metal distance is only 0.03A longer than 

the difference in the two MOgXg^" (X = CI, Br) dimers where 

the electron configuration remains unchanged. 

One aspect of the electronic structure predicted for a 

confacial bioctahedron with five electrons in metal-metal bond­

ing molecular orbitals such as those depicted in Figure 9 is 

the existence of an orbitally degenerate ' ground state. 

This orbital degeneracy theoretically requires some distortion 

to occur in order to break the degeneracy in accord with the 

theorem of Jahn and Teller (122). The Jahn-Teller theorem 

states that if a nonlinear molecule gives rise to an orbitally 

degenerate ground state as first presented, it will be found 

that a reduction to lower symmetry will occur as a means of 

removing that degeneracy. These distortions may be either 

static or dynamic in nature. Examples of observed Jahn-Teller 

distortions in octahedral complexes are largest when the e^ 

a-antibonding orbitals have an odd number of electrons present 
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(refer to Figure 7 for the octahedral molecular orbital dia-

o  2 + 9  
gram). Axial ligand displacements of up to 0.3A in Cu (d ) 

octahedral complexes have been attributed to such Jahn-Teller 

effects (123). On the other hand static Jahn-Teller distor­

tions resulting from degeneracies within the t2g manifold of 

molecular orbitals which are nonbonding relative to the metal-

ligand a-bonds lack experimental confirmation (124). The tgg 

orbital energies are not greatly influenced by metal-ligand 

distortions and as a result the driving force for Jahn-Teller 

stabilization is too small to effect observable changes in the 

ligand dispositions. 

The nonabromoditungstate(2-) dimer molecular orbital 

scheme (Figure 9) reveals the situation with respect to metal-

ligand bond distortions to be the same as in monomeric octa­

hedral compounds with orbital degeneracies due to electron 

occupancy of the t2g orbitals. A Jahn-Teller distortion is 

theoretically predicted, but the nonbonding nature of the 

degenerate e' orbitals involved with respect to the metal-

ligand a-bond framework precludes any significant metal-ligand 

bond length dependence on the occupancy or location of these 

energy levels. The dimeric case differs substantially from 

the monomeric case in that the e' orbitals of symmetry 

derived from the 0^ t2g orbitals are potentially bonding orbi­

tals for the metal-metal interaction, albeit the energy of 

this contribution is of uncertain magnitude. Thus a distortion 
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of the metal-metal bonding description would be anticipated to 

break the ground state orbital degeneracy while metal-ligand 

bonding remains virtually undistorted in the sense that bonds 

that were equivalent in symmetry would retain similar bond 

lengths in the distorted structure. 

The task of distorting the confacial bioctahedral struc­

ture to remove the e' degeneracy cannot be completed by vary­

ing the metal-metal separation, however. Even though contrac­

tion and elongation along the three-fold axis will drastically 

alter the orbital overlap, and therefore the absolute energy, 

of the a^' and e' bonding orbitals, the symmetry would be 

retained and the e' degeneracy would remain unbroken. The only 

remaining distortions are angular in nature, and one can envi­

sion several possibilities for preferentially lowering the 

energy of one of the two ir-bonding molecular orbitals which 

are energetically equivalent in rigorous symmetry. 

It is conceivable that an angular distortion in the dis­

position of the three bridging bromides could favor one of the 

two TT-orbitals at the expense of the other in a manner reminis­

cent of that detailed in the discussion of the structure of 

Ta^Br^tSC^Hg;^. In the tantalum dimer an additional and very 
O 

important constraint was the Ta-S^^ bond length of 2.39A which 

forced large angular displacements of the two bridging bro­

mines in order to favorably accommodate the bi symmetry TT-

orbital between the bridging sulfur and bromine atom sépara-
O 

tions of 3.86 and 3.90A while the bridging bromines closed to 
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O 
within 3.30A of one another. The Ta-Br^^ average bond length 

O O 
of 2.63A is similar to the 2.60A distance from tungsten to the 

bridging bromines in the tungsten dimer, but the presence of 

2 -
three such bridging bromines in WgBfg "» rather than only two 

O 
with the third bridging atom almost 0.2A closer to the two 

metal atoms as in Ta^Br^CSC^Hg)^, allows the nonbonded separa­

tions among the bridging atoms in the tungsten dimer to vary 
O 0 0 

from a minimum value of 3.79A through 3.89A to 4.01A. These 
O 

separations average 3.90A while the corresponding average in 
O 

the tantalum dimer is 3.69A due to the additional constraints 

imposed by the Ta-S^^ bond distances. Since the average 

bridging nonbonding separation in WgBrg^ is nearly equal to 

the two larger bridging separations in TagBr^CSC^Hg)^, it 

seems plausible that angular distortions of the bridging bro­

mides would not be required nor would they be likely to pro­

mote a lower energy for either n-orbital in the tungsten dimer. 

2 _ 
It appears that the nonbonded bridging distances in WgBrg 

are inherently large enough to support the intervening tt-

electron density as a result of the contraction of the two 

metal centers which couples with the inflexible length of the 

tungsten-bromine bridge bonds to enlarge the bridging atom 

triangle. While an angular displacement of the bridging bro­

mides might possibly break the degeneracy of the ir-levels by 

raising the energy of one of the two ir-molecular orbitals 

depicted in Figure 10 by collapsing toward the occupied lobes 

of the orbital, it seems doubtful that the increased space 
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available to the other ir-orbital would cause a correspondingly 

large decrease in energy, and hence the overall result would 

be energetically unfavorable. 

The search for a small angular distortion in the struc­

ture of [Cn-CjH^)^N]2W2Brg consistent with the relative im­

portance of the e' molecular orbital occupancy was rewarded by 

the following apparently picayune observation to which chemical 

significance may be attached. The three planes used to define 

d' and d" in Part I (see Figure 6) were assumed to be perpen­

dicular to the metal-metal axis, and in the case these 

planes are necessarily parallel to one another and perpendicu­

lar to the three-fold axis by symmetry. Crystallographic 

2 -three-fold symmetry is not imposed on the WgBrg anion, how­

ever, and, in fact, the location of each of the eleven heavy 

atoms is independent of any symmetry restrictions. The dis-

tortion which is experimentally observed in W2Brg is a 

slight canting of the two planes defined by the two sets of 

three terminal bromine atoms toward the bridgehead position 

occupied by Br(8). Distances and angles relevant to this dis­

tortion are presented in Figure 17. This angular rotation of 

the terminal trigonal face of ligands on each tungsten atom 

may appear unrelated to the metal-metal n-bonding interaction, 

but a strong link exists between the orientation of the metal 

d-orbital lobes used for metal-metal overlap and the spatial 

disposition of the remaining metal atom orbitals which form 

a-bonds to the ligands. If one attempts to break the ir-orbital 
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Figure 17. Schematic diagram of the canted terminal ligand planes in *28^9 
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degeneracy by some means other than raising the energy of one 

of the two orbitals via an angular displacement of the three 

bridging ligands such as discussed and rejected above for 

2 " W^Brg it becomes evident upon examining the overlap consid­

erations depicted in Figure 18 that a small rotation of the 

atomic orbitals on both tungsten atoms around axes perpendicu­

lar to the plane of the paper will effect the desired energy 

separation. The orbital rotation illustrated would increase 

the overlap of the b^ ÏÏ-orbital where the b^ representation is 

appropriate after tilting the terminal ligand planes reduces 

the effective symmetry of the dimer by eliminating the 

axis. In the case where both terminal planes tilt towards one 

2 -another, as observed in the WgBrg structure, the symmetry 

elements retained consist of the identity element, two mirror 

planes and one two-fold axis perpendicular to the metal-metal 

axis. In other words, an effective symmetry of €2^ pertains 

2 -
to the distorted structure observed for WgBrg , and the 

molecular orbital representations derived in Part I for Ta^Br^ 

(SC^Hg)^ are valid in the discussion of the symmetry reduction 

apparent in [(n-CgHyj^N]2^28^9" 

Before pursuing any interpretation of the tilted planes 

further the validity of examining the structure in terms of 

such a small deviation from symmetry should be firmly 

established. The theoretical prediction of a Jahn-Teller dis­

tortion was couched in terms of the relative effects apparent 

in octahedral complexes of different configurations. The 
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\ 

0| TT-orbifol in C2V symmetry 

_ / 

b| IT-orbital in C2V symmetry 

Figure 18. Metal orbital rotation proposed to influence the 
energy of the metal-metal ÏÏ-bonds 
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existence of large distortions resulting from the involvement 

of antibonding orbitals was contrasted with the negligible 

distortions due to tgg nonbonding orbital occupancy. The 

2 _ union of two octahedra to form the dimeric W^Brg ' anion should 

then fit in the latter category of negligible distortions since 

the odd electron is found in a "modified t2g orbital" where an 

unknown perturbation is introduced by the possibilities of 

metal-metal bonding. This redundant summary of the Jahn-

Teller background material is intended to clarify the type of 

structural deformation one might expect in the paramagnetic 

tungsten dimer. A subtle distortion that will favorably influ­

ence one of the two ir-orbitals without altering any metal-

ligand bond strengths seems most likely to result as a compro­

mise among the contributing factors. The use of the word 

subtle is to be emphasized since a complete absence of any 

detectable distortion could have been rationalized on the basis 

of comparisons with certain octahedral species for which Jahn-

Teller distortions are predicted but not observed in crystal 

structures. 

The point to be stressed is that there does exist a very 

significant deviation from symmetry relative to the stand­

ard deviations of the parameters involved in the structure of 

2 _ 
W^Brg The distortion observed is a real one even though it 

is small in magnitude, and a chemical explanation can justifi­

ably be sought. Packing forces within the crystal and van der 

Waals interactions should be investigated before searching for 
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more sophisticated and perhaps less reliable rationalizations, 

but nonetheless a rationalization of some sort is in order. 

A survey of the nearest neighbor distances between the 

cations and the anion reveals only seven heavy atom-light atom 

separations of less than 4.OA: Br(6)-C(8), 3.99(7); Br(6)-

C(ll), 3.88(6); Br(6)-C(21), 3.84(4); Br(l)-C(23), 3.81(5); 

Br(4)-C(17), 3.80(5); Br(5)-C(7), 3.98(4); Br(8)-C(2), 3.94(7). 

These distances are acceptable nonbonding separations with no 

systematic structural implications and in no way account for 

the distortions observed in the dianion. 

2-
Examination of nonbonded contacts within the W2Brg 

anion are not suggestive of any gross violation of van der 

Waals radii boundaries similar to that encountered in the 

bridging bromines of Ta2Brg(SC^Hg)^. However, a close inspec­

tion does reveal some trends which are small but significant 

in that they oppose the observed canted deformation rather 

than promoting any tilt of the terminal ligand planes. 

As mentioned previously the bridging ligands are well 

separated from one another, and in fact they exceed the remain-
O 

ing cis-bromine nonbonded distances by an average of 0.37A. 

Hxamination of the Br^gp^^Br^g^^ nonbonded contacts indicates 

two classifications can be derived from the six distances. 
O 

Four distances are between 3.56 and 3.59A while the remaining 
O 

two are 3.64 and 3.67A with the associated standard deviations 
O 

near .005A for each of the distances. The two longer dis­

tances are related in that both are between terminal atoms cis 
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to bridging Br(8); more concisely the two longer separations 

are related by the Cg-axis of symmetry even though no such 

relationship is crystallographically imposed. 

Continued scrutiny of the nonbonded terminal-bridging 

bromine contacts supplements the previous data by again sin­

gling out Br^yCS) as slightly unique in the array of cis-
O 

bromine distances: Brj^^,(8)-Br^ average 3.47A; Brj^^C9)-Br^ 
O O 

average 3.53A; Bry^(7)-Br^ average 3.51A. The differences in 

the average Bry^-Br^ distances are small but statistically 
O 

significant since the standard deviations are near 0.005A for 

these heavy atoms as was mentioned previously. Particularly 

when one considers that the larger separations observed between 

Br(1)-Br(3) and Br(5)-Br(à) would tend to increase the non-

bonded separations of Br^^,C8) with all four adjacent terminal 

cis-bromines and yet the Br^.^.(8) contacts still remain signif­

icantly less than those of Br^^(7) and Br^^(9), it seems 

logical to discount steric hindrance among the bromines as a 

possible contributor to the observed canted structure. Quite 

the opposite conclusion can be reached in relating the steric 

interactions to the observed structure deformation: to the 

extent that nonbonded contacts are important they oppose the 

observed small rotation of the terminal trigonal faces since 

greater repulsions result as four of the terminal atoms 

approach bridging atom Br(8) more closely. Figure 19 illus­

trates the nonbonding distances discussed above. 



www.manaraa.com

177 

/ i3.59 

B r 4  

^3.58 

Br6 

Br 5 

3.53v 
B r 9  

3.54"^ 

Br4 

3.54 
B r 7  

3.54' 

2 Figure 19. Schematic diagram of nonbonded distances in W^Brg 
which identify Br^^(8) as unique 
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The excursion to consider packing forces and steric repul­

sions which might influence the structure was a fruitful exer­

cise even though no rationalization for the small structural 

deformation was found. The question of what factors cause the 

terminal ligand planes to tip as evidenced by the angles of 

approximately 3® between the metal-metal axis and the normals 

to the two planes remains, and an electronic explanation now 

seems appropriate. Metal-ligand a-bonds are not expected to 

favor any deviation from the idealized confacial bioctahedral 

structure. The a^* metal-metal sigma bonding molecular orbi­

tal is axially symmetric and not influenced by angular distor­

tions. As in the case of TagBr^tSC^Hg)^ a process of elimina­

tion leads one to the metal-metal n-orbital arena to explain 

the structural details of the nonabromoditungstate(2-) anion. 

7 -
The positions of the bridging bromines in WgBrg " are not 

indicative of a systematic distortion even though certain 

parameters, such as the Bf^r'^^^^br and the nonbonded 

separations, do vary considerably. The lack of any systematic 

distortion in the bridging positions in view of the canted 

orientation of the terminal ligand planes can be explained as 

a result of the fixed constraints inherent in bridging posi­

tions. The triangle formed by the two metal atoms and a 

bridging ligand has three sides which are effectively fixed in 

length by bonding interactions and thus no degree of freedom 

is left. For terminal atoms the bond length can remain un­

changed during a rotation of the halide ligand around an axis 
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passing through the metal atom, but this mode of distortion is 

not available to the three bridging ligands with the one excep­

tion of an axis coincident with the metal-metal axis which has 

already been discounted. 

That a slight rotation of the atomic orbitals on each of 

the tungsten atoms around an axis bisecting Br(7) and Br(l) on 

W(l) and bisecting Br(7) and Br(5) on W(2) would increase the 

overlap of the b^^ n-orbital and decrease the overlap of the a^ 

TT-orbital is clear from Figures 17 and 18. 

A quantitative description of the overlap dependence on 

an angular rotation of the orbitals is not possible in this 

thesis, but a crude geometrical argument offers some insight 

into the overlap variations which accompany a small rotation. 

The d^y, d^2, and d^^ orbitals of each metal atom will be 

mutually perpendicular and the angle between two corresponding 

orbitals, one from each metal atom, will be 70.5® in a con-

facial bioctahedron of symmetry. A small rotation of A0 

causes the orbital lobe to shift by a distance rA9, where r is 

a length describing the orbital and A0 is the rotation angle 

in radians, either towards or away from the adjacent metal 

atom depending on the sense of the rotation relative to the 

orbital lobe in question. Figure 20 graphically illustrates 

the orbital motion of one lobe of a metal d^^-orbital in a 

dimer upon descending to symmetry via a rotation of A0. 

For a rotation angle of 3.3° the lobe shifts by 0.058r or 
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Undistorted Overlap Diagram 

Ml M2 

A0 = 3.2® for each atom overlap diagram 

Ml M2 

Figure 20. Orbital motion of a metal d-orbital upon rotation 
by an angle of AO 
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O O 
nearly 0.06A per A of orbital lobe length. A combination of 

two such angular displacements, with each tungsten rotated 

slightly as shown in Figure 20, leads to an energy separation 

of the two TT-bonding orbitals since the a^ overlap decreases 

6 s the bj overlap increases. This mechanism is postulated as 

the route by which the e* orbital degeneracy is broken in 

accord with the Jahn-Teller theorem. The actual orbital rota­

tion which affects the metal-metal TT-bonding orbitals is not 

directly observable, but the canted terminal ligand planes 

testify to the existence of this static angular deformation. 
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SUMMARY 

The union of monomeric metal moieties to produce metal-

metal bonded dimers was promoted by two diametrically opposite 

preparative routes for tantalum and tungsten: reduction of 

TaCV) and oxidation of W(0). Reduction of TaXg, (X = CI or 

Br), with two equivalents of sodium amalgam occurred at room 

temperature in the presence of excess tetrahydrothiophene to 

form TagX^CSC^Hg)^, a highly-colored dimer which was soluble 

in the aromatic reaction medium and could be purified via ex­

traction. Oxidation of [(n-C^Hy)^N][W(CO)^Br] occurred in 

refluxing chlorobenzene with excess 1,2-dibromoethane as the 

oxidant to expel carbon monoxide and produce a dark green pre­

cipitate of [(n-C2Hy)^N]2[W2Brg]. 

Magnetic susceptibility measurements indicated that the 

tantalum dimer had no unpaired electrons in the ground state 

(spin-pairing of the two d configurations through metal-metal 

bonding offers a satisfactory explanation for this diamagnetic 

behavior) and the tungsten anion exhibited Curie behavior con­

sistent with one unpaired electron per dimer over a wide tem­

perature range (a total of five valence electrons are distrib­

uted between the two tungsten atoms and hence four are paired). 

The observed magnetic properties were consistent with metal-

metal bond orders of 2.0 and 2.5 for Ta^X^CSC^Hg^gand WgBrg^", 

respectively. 

The presence of tetrahydrothiophene ligands in two differ­
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ent molecular environments in a ratio of 1:2 was indicated by 

proton magnetic resonance spectra of TagX^CSC^Hg)^. Nuclear 

quadrupole resonances of chlorine and bromine isotopes in 

Ta^X^CSC^Hg)^ were also divisible into two types for each iso­

tope, and interpretation in terms of a confacial bioctahedral 

dimer with two bridging halides and one bridging tetrahydro-

thiophene ligand accounted for the observation of both terminal 

and bridging halogen nqr frequencies as well as agreeing with 

the pmr data mentioned previously. Further spectral data 

obtained for both Ta2Xg(SC^Hg)^ and [(n-C^Hy)^N]2[W2Brg] in­

cluded Nujol mull infrared spectra and solution electronic 

spectra. 

Confacial bioctahedral structures were determined for both 

Ta2BrgCSC^Hg)2 and [(n-C^H^)^N]2[W2Brg] via single crystal 

x-ray techniques. The tantalum dimer contained a unique bridg­

ing tetrahydrothiophene trans to terminal tetrahydrothiophene 

ligands on each of the metal octahedra, and bromines occupied 

the remaining six ligand positions. A Ta-Ta distance of 
O 

2.710(2)A was found and considered appropriate for a metal-

metal double bond. The WgBrg^ anion exhibited d(W-W) = 2.601 
O 

(2) A and axial contraction of the two metal atoms was evident 

in the distortions present in the confacial bioctahedral struc­

ture . 

An examination of the electron configurations present in 

each of the dimers structurally chracterized (four electrons 
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for (SC^Hg)^ and five electrons for WgBrgZ") in conjunc­

tion with a qualitative description of the metal-metal molecu­

lar orbitals resulting from overlap of metal atomic orbitals 

offered considerable insight into the unusual distortions 

present in the dimers. Occupation of only one of the two 

available metal-metal ir-bonding orbitals in the tantalum dimer 

was reflected in the disposition of the three bridging ligands 

due to the stereochemical requirements of the two -rr-bonding 

7 -
electrons. The distortion present in the W^Br^ anion was a 

slightly more subtle deviation involving canted terminal ligand 

planes as a result of a Jahn-Teller effect which splits the 

degeneracy of ^e' ground state appropriate for symmetry by 

a static rotation of the metal orbital components of the ir-

bonding molecular orbitals. 
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Table 19. Final positional parameters for Ta 

Atom X y Z 

Ta(l) -0.3118(1) 0.2873(1) 0.2651(2) 

Ta(2) -0.1428(1) 0.2090(1) 0.2111(2) 

Br(l) -0.3144(4) 0.2954(3) 0.5429 (5) 

Br(2) -0.5401(3) 0.2196(3) 0.1092(6) 

Br(3) 0.0271(4) 0.1494(3) 0.4425(5) 

Br(4) -0.2066(4) 0.0622(3) 0.0082(6) 

Br(5) -0.0807(3) 0.3958(3) 0.3578(5) 

Br(6) -0.2767(4) 0.3255(3) -0.0111(5) 

SCI) -0.2897(9) 0.1044(8) 0.3215(13) 

S(2) -0.3515(9) 0.4828(7) 0.2177(14) 

S(3) 0.0430(9) 0.3060(8) 0.1216(13) 

CCD -0.2448(31) 0.0426(29) 0.5276(47) 

C(2) -0.3607(53) -0.0617(48) 0.4967(80) 

C(3) -0.3940(50) -0.1043(47) 0.3479(77) 

C(4) -0.4207(34) -0.0147(32) 0.2130(51) 

C(5) -0.2434(37) 0.5744(33) 0.3956(55) 

C(6) -0.3364(36) 0.6061(32) 0.4494(53) 

C(7) -0.4600(35) 0.5960(32) 0.3287(53) 

C(8) -0.4967(33) 0.4826(30) 0.2403(50) 

C(9) 0.1164(35) 0.2022(33) 0.0971(54) 

C(10) 0.1018(50) 0.2217(47) -0.0767(78) 

C(ll) 0.0382(70) 0.2881(66) -0.1695(102) 

C(12) -0.0159(45) 0.3493(42) -0.0884(68) 

Numbers in parentheses are the estimated standard devia­
tions of the coordinates and refer to the last significant 
digit of the preceding number. 
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Table 20. Final thermal parameters (xlO^) for TagBr^CSC^Hg)^ 

Atom Pli ^22 P33 ^12 ^13 ^23 

Ta(l)* 81(1) 47(1) 116(3) 7(1) 44(2) -12(2) 

Ta(2) 83(2) 48(2) 135(3) 7(1) 48(2) -17(2) 

Br(l) 142(5) 80(3) 120(8) 37(3) 74(5) 0(4) 

Br(2) 76(4) 73(3) 230(10) 0(3) 45(5) 41(5) 

Br(3) 109(4) 65(3) 183(9) 29(3) 52(5) 16(5) 

Br(4) 138(5) 73(3) 236(10) -2(3) 95(6) -69(5) 

Br(5) 80(4) 50(3) 145(8) 4(3) 40(4) 26(4) 

Br(6) 108(4) 80(3) 116(8) 24(3) 53(5) 0(4) 

SCI) 117(11) 52(7) 187(22) 5(7) 66(13) -30(11) 

S(2) 130(11) 43(7) 207(24) 22(7) 95(14) 2(11) 

S(3) 95(10) 86(9) 175(22) 10(8) 66(13) -19(12) 

c(i)b 4 .3(8) 

C(2) 10 .2(16) 

C(3) 9 .5(15) 

C(4) 5 .1(9) 

C(5) 5 .9(10) 

C(6) 5 .5(9) 

C(7) 5 .4(9) 

C(8) 4 .7(8) 

C(9) 5 .6(9) 

C(10) 8 .9(14) 

C(ll) 14 .1(23) 

C(12) 8 .4(13) 

^The form of the anisotropic temperature factor expression 

is exp[-(Giih^+622k^+G33&^+2&i2hk+2Bi3h&+2g23k&)]. 

^The form of the isotropic temperature factor expression 

is exp[-3(sin^9/X^)]. 
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Table 21. Observed and calculated structure factors for 
Ta2Br5(SC4H8)3 
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Table 21. (Continued) 
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Table 21. (Continued) 
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Table 22. Bond distances in the tetjapropylammonium cations 
of [Cn-C2Hy)4N]2[W2Brg], A 

Cation #1 

N(l)-C(l) 1.57(5) 

N(l)-C(4) 1.54(7) 

N(l)-C(7) 1.47(5) 

N(l)-C(10) 1.47(6) 

Average N(l)-C 1.51 

C(l)-C(2) 1.16(6) 

C(2)-C(3) 1.41(7) 

C(4)-C(5) 1.33(9) 

C(5)-C(6) 1.57(8) 

C(7)-C(8) 1.40(7) 

C(8)-C(9) 1.25(8) 

C(10)-C(ll) 1.13(6) 

C(ll)-C(12) 1.43(6) 

Average C-C 1.34 

Cation #2 

N(2)-C(13) 1.56(4) 

N(2)-C(16) 1.52(5) 

N(2)-C(19) 1.52(4) 

N(2)-C(22) 1.61(5) 

Average N(2j-C 1.55 

C(13)-C(14) 1.45(6) 

C(14)-C(15) 1.43(5) 

C(16)-C(17) 1.28(6) 

C(17)-C(18) 1.52(5) 

C(19)-C(20) 1.41(6) 

C(20)-C(21) 1.45(5) 

C(22)-C(23) 1.46(6) 

C(23)-C(24) 1.52(6) 

Average C-C 1.44 
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Table 23. Final positional parameters for [(n-C,H_).N]? 
[WgBfg]* 

Atom X y z 

W(l) 0, 38141(3) 0. 3262(1) 0. 3840(1) 

W(2) 0. 36504(3) 0. 1425(1) 0. 3184(1) 

Br(l) 0. 3906(1) 0. 5079(3) 0. 3232(1) 

Br(2) 0. 3437(1) 0. 4255(3) 0. 4671(1) 

Br(3) 0. 4389(1) 0. 3544(3) 0. 4670 (1) 

Br(4) 0. 3082(1) 0. 0211(3) 0. 3241(2) 

BrC5) 0. 3566(1) 0. 1305(3) 0. 1893(1) 

Br(6) 0. 4047(1) -0. 0281(3) 0. 3290(1) 

Br(7} 0. 3191(1) 0. 3089(2) 0. 3072(1) 

Br(8) 0. 4269(1) 0. 2429(3) 0. 3041(1) 

Br(9) 0. 3707(1) 0. 1455(2) 0. 4515(1) 

N(l) 0. 4374(8) 0. 247(2) 0. 032(1) 

N(2) 0. 1861(6) 0. 206(2) 0. 330(1) 

CCD 0. 444(1) 0. 355(3) 0. 076(2) 

C(2) 0. 449(2) 0. 385(5) 0. 132(2) 

C(3) 0. 458(1) 0. 482(3) 0. 170(2) 

C(4) 0. 447(2) 0. 143(4) 0. 074(5) 

C(5) 0. 480(2) 0. 131(5) 0. 110(6) 

C(6) 0. 486(1) 0. 023(4) 0. 154(3) 

CC7) 0. 396(1) 0. 239(5) 0. 020(2) 

CCS) 0. 365(2) 0. 199(6) -0. 020(3) 

C(9) 0. 331(1) 0. 195(3) -0. 022(2) 

C(10) 0. 453(1) 0. 256(7) -0. 033(3) 

C(ll) 0. 452 (2) 0. 289(6) -0. 087(2) 

C(12) 0. 475(1) 0. 287(3) -0. 141(2) 

C(13) 0. 205(1) 0. 265(4) 0. 395(2) 

Numbers in parentheses are the estimated standard devia­
tions of the coordinates and refer to the last significant 
digit of the preceding number. 
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Table 23. (Continued) 

Atom X y z 

C(14) 0.210(1) 0.384(4) 0.397(2) 

C(15) 0.228(1) 0.435(2) 0.457(2) 

CC163 0.185(1) 0.088(3) 0.356(2) 

CC17) 0.207(1) 0.005(4) 0.357(2) 

C(18) 0.205(1) -0.103(3) 0.395(1) 

CC19) 0.149(1) 0.259(4) 0.306(2) 

CC203 0.124(1) 0.277(4) 0.356(2) 

CC21} 0.086(1) 0.295(4) 0.331(2) 

C(22) 0.212(1) 0.216(3) 0.269(2) 

C(23) 0.201(1) 0.158(3) 0.205(2) 

C(24) 0.231(1) 0.157(3) 0.157(1) 
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Table 24. Final thermal parameters (xl03) for [(n-C,H_) 4^] 2 
[WzBr 9]" 

Atom 9ll ^22 ^33 ^12 Gl3 ^23 

W(l) 1.04(1) 9.3(1) 2.96(4) 0 .10(3) 0 .32(1) 0 .12(5) 

W(2) 1.12(1) 8.6(1) 2.97(3) 0 .08(3) 0 .40(1) 0 .17(5) 

Br(l) 1.58(3) 11.7(3) 5.4(1) -0 .44(9) 0 .21(5) 2 .2(1) 

Br(2) 1.97(4) 13.2(3) 4.7(1) 0 .9(1) 1 .19(6) -0 .8(1) 

Br(3) 1.46(3) 16.7(4) 5.1(1) 0 .2(1) -0 .59(5) -0 .4(2) 

Br(4) 1.43(3) 12.4(3) 6.1(1) -0 .80(9) 0 .38(6) 1 .3(1) 

Br(5) 1.92(4) 14.2(3) 3.2(1) -0 .2(1) 0 .13(5) -0 .1(1) 

Br(6) 1.84(4) 12.5(3) 5.3(1) 1 .6(1) 0 .55(6) 0 .4(1) 

Br(7) 1.12(3) 10.6(3) 5.5(1) 0 .35(8) -0 .23(5) -0 .1(1) 

Br(8) 1.25(3) 14.9(3) 5.1(1) -0 .21(9) 1 .00(5) -0 .8(1) 

Br(9) 2.27(4) 11.0(3) 3.0(1) -0 .2(1) 0 .67(5) 0 .5(1) 

N(l) 1.8(2) 6.7 8.8 -1 .0 1 .7 -3 .9 

N(2) 1.0(2) 17.2 2.3 -0 .6 0 .3 -0 .5 

C(l) 4.3(9) 15(4) 7(2) -1 .8 0 .1 -2 .3 

C(2) 10(2) 30(8) 6(1) 1 .6 4 .1 -7 .6 

C(3) 3.1(6) 18(4) 8(2) -4 .1 1 .6 -3 .7 

C(4) 3(1) 8(4) 26(6) 2 .4 0 .5 -1 .0 

C(5) 4(1) 21(8) 27(8) 1 .9 -1 .2 4 .9 

C(6) 3.3(8) 19(5) 15(3) 1 .2 2 .6 6 .5 

C(7) 2.8(6) 5(1) 4(1) -6 .7 1 .4 -0 .8 

CC8) 4(1) 4(1) 7(2) 4 .9 -2 .2 -3 .7 

C(9) 1.3(3) 23(6) 7(1) -0 .8 -1 .5 -0 .4 

C(10) 2.5(6) 8(1) 8(2) -6 .5 0 .6 10 .0 

C(ll) 5(1) 4(1) 3(1) -4 .9 2 .5 -1 .2 

C(12) 1,7(4) 24(5) 6(1) 0 .7 0 .7 0 .1 

C(13) 1.8(5) 20(5) 9(2) -0 .3 -0 .3 -7 .0 

*The form of the anisotropic temperature factor expres­

s i o n  i s  e x p [ - + 2 g ^ 2 h k + 2 g ^ 2 h & + 2 B 2 3 k & ] '  
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Table 24. (Continued) 

A t o m  3 i i  ^ 2 2  G 3 3  ^ 1 2  ^13 ^ 2 3  

C ( 1 4 )  2 . 3 ( 6 )  1 5 ( 5 )  1 0 ( 2 )  0 . 2  - 0 . 1  - 2 . 1  

C ( 1 5 )  2 . 8 ( 5 )  1 0 ( 3 )  6 ( 1 )  - 0 . 7  - 0 . 3  - 1 . 9  

C ( 1 6 )  5 . 6 ( 9 )  1 7 ( 5 )  5 ( 1 )  2 . 7  4 . 5  4 . 5  

C ( 1 7 )  3 . 7 ( 7 )  2 0 ( 6 )  8 ( 1 )  3 . 0  3 . 7  2 . 9  

C ( 1 8 )  2 . 2 ( 4 )  1 4 ( 3 )  4 ( 1 )  - 1 . 9  - 0 . 2  1 . 9  

C ( 1 9 )  0 . 9 ( 3 )  3 7 ( 7 )  8 ( 2 )  - 0 . 1  0 . 0  - 5 . 8  

C ( 2 0 )  1 . 1 ( 3 )  3 8 ( 7 )  1 0 ( 2 )  3 . 2  0 . 2  - 6 . 1  

C ( 2 1 )  1 . 8 ( 4 )  2 6 ( 5 )  1 0 ( 2 )  2 . 1  2 . 6  5 . 5  

C ( 2 2 )  3 . 8 ( 7 )  1 2 ( 3 )  7 ( 1 )  - 2 . 7  0 . 2  - 1 . 5  

C ( 2 3 )  3 . 7 ( 8 )  9 ( 4 )  1 0 ( 2 )  - 0 . 4  0 . 0  2 . 9  

C ( 2 4 )  2 . 2 ( 4 )  1 9 ( 5 )  5 ( 1 )  0 . 3  2 . 0  - 1 . 3  
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Table 25. Observed and calculated structure factors for 
[(n-C^Hyj^NlzlWgBrg] 
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Table 25. (Continued) 

I -4 lae .11* 

ts tes io« 

BIB -00» 

3-10 267 -200 
J. 12 131 132 
3-tft «ft -«0 
i 19 to -117 

^17 #7 «100 
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Table 25. (Continued) 
I -r III - n o  •  9 41 >«4 r-t« «I .#0 6 4 US «W* 8 s 4 f f  1 . 11 in IM 
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" " * « 1 07 *9 * «4 99# 940 d « TO -07 #-10 •> -?* « *9 24* «90 0 »# T|* «7* 
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10 -a 71 04 0-10 so 07 * -T III «10 * 9 199 -140 0-19 7Q -?0 • -* #3 -04 ». |# |tt -IIT 
10 - 7  ICS «0 7 I 9 90 99 * -* |09 107 S 4 91 00 *-14 T* «7* S -7 T9 77 0-1* 901 -40: 
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3 -3 130 130 l-IO 100 - 147 M # 9 10 S 09 «2 9 7 *3 70 0 0 BO# *3# 
2 .9 100 113 I'll 127 120 R t PO PC 10 2 04 04 9 4 77 77 0 -I 2*4 -&97 
I -4 17# 109 l-IO 90 -02 II 4 97 00 10 I *0 -49 # I 40 04 A -2 1*1 -139 
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O-ll 42 40 7 -I 101 199 4 0 41 *4 7-19 04 -00 2 -I I 00 1*0 
H > 0 0-19 07 -07 7 -9 no no 0 7 74 -TJ # 17 *# -71 2 -9 900 -914 

ML PO PC 0 1* 09 -09 7 -4 71 *0 * 4 111 III # I* ** 79 1-0 141 -ISO 
n I 90 9* * 10 101 103 7 -0 114 -100 A 9 97 -109 • •# 19# 149 I -* I*# 1*1 
I I I II* 110 0 14 07 #4 7 -* II# 119 0 I 234 -127 #11 0* -#7 I -7 904 9*4 
I I 0  0# -01 0 10  143 -199 7 -0 000 -100 *  I  90 97 0 0 01 00 1 -0 94 -00 
II -I 07 -00 * * 7* 74 7 -0 n* I 14 A - 1 141 144 # 7 114 -117 2 - 9  109 -300 
II -4 07 00 0 0 47 -41 7-10 00 09 0 -2 400 4(2 # # 04 #0 1-10 1*9 -1*1 
0 I I  4# -0# * 7 I 30 » 192 7-1 3 *0 -01 * -3 90 -97 # B I 10 107 2-11 110 -III 
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